
Wiggins: Detecting Valuable Information
in Dynamic Networks Using Limited Resources

Ahmad Mahmoody∗, Matteo Riondato†, Eli Upfal*
{ahmad,eli}@cs.brown.edu, matteo@twosigma.com

March 2, 2016

“Have you found it, Wiggins?”

[Sherlock Holmes in A Study in Scarlet]

Abstract
Detecting new information and events in a dynamic network by probing individual nodes has many

practical applications: discovering new webpages, analyzing influence properties in network, and detect-
ing failure propagation in electronic circuits or infections in public drinkable water systems. In practice,
it is infeasible for anyone but the owner of the network (if existent) to monitor all nodes at all times.
In this work we study the constrained setting when the observer can only probe a small set of nodes at
each time step to check whether new pieces of information (items) have reached those nodes.

We formally define the problem through an infinite time generating process that places new items
in subsets of nodes according to an unknown probability distribution. Items have an exponentially
decaying novelty, modeling their decreasing value. The observer uses a probing schedule (i.e., a probability
distribution over the set of nodes) to choose, at each time step, a small set of nodes to check for new items.
The goal is to compute a schedule that minimizes the average novelty of undetected items. We present
an algorithm, wiggins, to compute the optimal schedule through convex optimization, and then show
how it can be adapted when the parameters of the problem must be learned or change over time. We also
present a scalable variant of wiggins for the MapReduce framework. The results of our experimental
evaluation on real social networks demonstrate the practicality of our approach.

1 Introduction
Many applications require the detection of events in a network as soon as they happen or shortly thereafter,
as the value of the information obtained by detecting the events decays rapidly as time passes. For example,
an emerging trend in algorithmic stock trading is the use of automatic search through the Web and social
networks for pieces of information that can be used in trading decisions before they appear in the more
popular news sites [10, 14, 23, 26]. Similarly, intelligence, business and politics analysts are scanning online
sources for new information or rumors. While new items are often reblogged, retweeted, and posted on
a number of sites, it is sufficient to find an item once, as fast as possible, before it loses its relevance or
freshness. There is no benefit in seeing multiple copies of the same news item or rumor. This is also the case
when monitoring for intrusions, infections, or defects in, respectively, a computer network, a public water
system, or a large electronic circuit.

Monitoring for new events or information is a fundamental search and detection problem in a distributed
data setting, not limited to social networks or graph analysis. In this setting, the data is distributed among a
large number of nodes, and new items appear in individual nodes (for example, as the products of processing
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the data available locally at the node), and may propagate (being copied) to neighboring nodes on a physical
or a virtual network. The goal is to detect at least one copy of each new item as soon as possible. The
search application can access any node in the system, but it can only probe (i.e., check for new items on) a
few nodes at a time. To minimize the time to find new items, the search application needs to optimize the
schedule of probing nodes, taking into account (i) the distribution of copies of items among the nodes (to
choose which nodes to probe), and (ii) the decay of the items’ novelty (or relevance/freshness) over time (to
focus the search on most relevant items). The main challenge is how to devise a good probing schedule in
the absence of prior knowledge about the generation and distribution of items in the network.

Contributions In this work we study the novel problem of computing an optimal node probing schedule
for detecting new items in a network under resource scarceness, i.e., when only a few nodes can be probed
at a time. Our contributions to the study of this problem are as follows:

• We formalize a generic process that describes the creation and distribution of information in a network,
and define the computational task of learning this process by probing the nodes in the network according
to a schedule. The process and task are parametrized by the resource limitations of the observer and
the decay rate of the novelty of items. We introduce a cost measure to compare different schedules: the
cost of a schedule is the limit of the average expected novelty of uncaught items at each time step. On
the basis of these concepts, we formally define the Optimal Probing Schedule Problem, which requires
to find the schedule with minimum cost.

• We conduct a theoretical study of the cost of a schedule, showing that it can be computed explicitly and
that it is a convex function over the space of schedules. We then introduce wiggins,1 an algorithm to
compute the optimal schedule by solving a constrained convex optimization problem through the use
of an iterative method based on Lagrange multipliers.

• We discuss variants of wiggins for the realistic situation where the parameters of the process needs to
be learned or can change over time. We show how to compute a schedule which is (probabilistically)
guaranteed to have a cost very close to the optimal by only observing the generating process for a
limited amount of time. We also present a MapReduce adaptation of wiggins to handle very large
networks.

• Finally, we conduct an extensive experimental evaluation of wiggins and its variants, comparing
the performances of the schedules it computes with natural baselines, and showing how it performs
extremely well in practice on real social networks when using well-established models for generating
new items (e.g., the independence cascade model [17]).

To the best of our knowledge, the problem we study is novel and we are the first to devise an algorithm
to compute an optimal schedule, both when the generating process parameters are known and when they
need to be learned.
Paper Organization. In Sect. 2 we give the fundamental definitions, and formally introduce the settings
and the problem. We discuss related works in Sect. 3. In Sect. 4 we describe our algorithm wiggins and
its variants. The results of our experimental evaluation are presented in Sect. 5. We conclude by outlining
directions for future work in Sect. 6.

2 Problem Definition
In this section we formally introduce the problem and define our goal.

Let G = (V,E) be a graph with |V | = n nodes. W.l.o.g. we let V = [n]. Let F ⊆ 2V be a collection
of subsets of V , i.e., a collection of sets of nodes. Let π be a function from F to [0, 1] (not necessarily a
probability distribution). We model the generation and diffusion of information in the network by defining
a generating process Γ = (F , π). Γ is a infinite discrete-time process which, at each time step t, generates

1In the Sherlock Holmes novel A study in scarlet by A. Conan Doyle, Wiggins is the leader of the “Baker Street Irregulars”,
a band of street urchins employed by Holmes as intelligence agents.
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a collection of sets It ⊆ F such that each set S ∈ F is included in It with probability π(S), independent
of t and of other sets generated at time t′ ≤ t. For any t and any S ∈ It, the ordered pair (t, S) represents
an item - a piece of information that was generated at time t and reached instantaneously the nodes in S.
We choose to model the diffusion process as instantaneous because this abstraction accurately models the
view of an outside resource-limited observer that does not have the resources to monitor simultaneously all
the nodes in the network at the fine time granularity needed to observe the different stages of the diffusion
process.
Probing and schedule. The observer can only monitor the network by probing nodes. Formally, by probing
a node v ∈ V at time t, we mean obtaining the set I(t, v) of items (t′, S) such that t′ ≤ t and v ∈ S:2

I(t, v) := {(t′, S) : t′ ≤ t, S ∈ It′ , v ∈ S} .

Let Ut be the union of the sets It′ generated by Γ at any time t′ ≤ t, and so I(t, v) ⊆ Ut.
We model the resource limitedness of the observer through a constant, user-specified, parameter c ∈ N,

representing the maximum number of nodes that can be probed at any time, where probing a node v returns
the value I(t, v).

The observer chooses the c nodes to probe by following a schedule. In this work we focus on memoryless
schedules, i.e., the choice of nodes to probe at time t is independent from the choice of nodes probed at
any time t′ < t. More precisely, a probing c-schedule p is a probability distribution on V . At each time t,
the observer chooses a set Pt of c nodes to probe, such that Pt is obtained through random sampling of V
without replacement according to p, independently from Pt′ from t′ < t. Memoryless schedules are simple,
easy to store, and fast to implement.
Caught items, uncaught items, and novelty. We say that an item (t′, S) is caught at time t ≥ t′ iff

1. a node v ∈ S is probed at time t; and
2. no node in S was probed in the interval [t′, t− 1].

Let Ct be the set of items caught by the observer at any time t′ ≤ t. We have Ct ⊆ Ut. Let Nt = Ut \Ct
be the set of uncaught items at time t, i.e., items that were generated at any time t′ ≤ t and have not been
caught yet at time t. For any item (t′, S) ∈ Nt, we define the θ-novelty of (t′, S) at time t as

fθ(t, t′, S) := θt−t
′
,

where θ ∈ (0, 1) is a user-specified parameter modeling how fast the value of an item decreases with time if
uncaught. Intuitively, pieces of information (e.g., rumors) have high value if caught almost as soon as they
have appeared in the network, but their value decreases fast (i.e., exponentially) as more time passes before
being caught, to the point of having no value in the limit.
Load of the system and cost of a schedule. The set Nt of uncaught items at time t imposes a θ-load,
Lθ(t), on the graph at time t, defined as the sum of the θ-novelty at time t of the items in Nt:

Lθ(t) :=
∑

(t′,S)∈Nt

fθ(t, t′, S) .

The quantity Lθ(t) is a random variable, depending both on Γ and on the probing schedule p, and as such
it has an expectation E[Lθ(t)] w.r.t. all the randomness in the system. The θ-cost of a schedule p is defined
as the limit, for t→∞, of the average expected load of the system:

costθ(p) := lim
t→∞

1
t

∑
t′≤t

E[Lθ(t)]

= lim
t→∞

1
t

∑
t′≤t

E

 ∑
(t′′,S)∈Nt′

fθ(t′, t′′, S)

 .

2The set S appears in the notation for an item only for clarity of presentation: we are not assuming that when we probe a
node and find an item (t, S) we obtain information about S.

3



Intuitively, the load at each time indicates the amount of novelty we did not catch at that time, and the cost
function measures the average of such loss over time. The limit above always exists (Lemma 1).

We now have all the necessary ingredients to formally define the problem of interest in this work.
Problem definition. Let G = (V,E) be a graph and Γ = (F , π) be a generating process on G. Let c ∈ N
and θ ∈ (0, 1). The (θ, c)-Optimal Probing Schedule Problem ((θ, c)-OPSP) requires to find the optimal
c-schedule p∗, i.e., the schedule with minimum θ-cost over the set Sc of c-schedules:

p∗ = arg min
p
{costθ(p), p ∈ Sc} .

Thus, the goal is to design a c-schedule that discovers the maximum number of items weighted by their
novelty value (which correspond to those generated most recently). The parameter θ controls how fast the
novelty of an item decays, and influences the choices of a schedule. When θ is closed to 0, items are relevant
only for a few steps and the schedule must focus on the most recently generated items, catching them as soon
as they are generated (or at most shortly thereafter). At the other extreme (θ ≈ 1), an optimal schedule
must maximizes the total number of discovered items, as their novelty decays very slowly.

Viewing the items as “information” disseminated in the network, an ideal schedule assigns higher probing
probability to nodes that act as information hubs, i.e., nodes that receive a large number of items. Thus, an
optimal schedule p∗, identifies information hubs among the nodes. This task (finding information hubs) can
be seen as the complement of the influence maximization problem [17, 18]. In the influence maximization
problem we look for a set of nodes that generate information that reach most nodes. In the information hubs
problem, we are interested in a set of nodes that receive the most of information, thus the most informative
nodes for an observer.

In the following sections, we may drop the specification of the parameters from θ-novelty, θ-cost, θ-load,
and c-schedule, and from their respective notation, as the parameters will be clear from the context.

3 Related Work
The novel problem we focus on in this work generalizes and complements a number of problems studied in
the literature.

The “Battle of Water Sensor Network” challenge [29] motivated a number of works on outbreak detection:
the goal is to optimally place static or moving sensors in water networks to detect contamination [13, 20, 24].
The optimization can be done w.r.t. a number of objectives, such as maximizing the probability of detection,
minimizing the detection time, or minimizing the size of the subnetwork affected by the phenomena [24].
A related work [1] considered sensors that are sent along fixed paths in the network with the goal of gath-
ering sufficient information to locate possible contaminations. Early detection of contagious outbreaks by
monitoring the neighborhood (friends) of a randomly chosen node (individual) was studied by Christakis
and Fowler [7]. Krause et al. [21] present efficient schedules for minimizing energy consumption in battery
operated sensors, while other works analyzed distributed solutions with limited communication capacities
and costs [11, 19, 22]. In contrast, our work is geared to detection in huge but virtual networks such as the
Web or social networks embedded in the Internet, where it is possible to “sense” or probe (almost) any node
at approximately the same cost. Still only a restricted number of nodes can be probed at each steps but the
optimization of the probing sequence is over a much larger domain, and the goal is to identify the outbreaks
(items) regardless of their size and solely by considering their interest value.

Our methods complement the work on Emerging Topic Detection where the goal is to identify emerging
topics in a social network, assuming full access to the stream of all postings. Providers, such as Twitter or
Facebook, have an immediate access to all tweets or postings as they are submitted to their servers [4, 25].
Outside observers need an efficient mechanism to monitor changes, such as the methods developed in this
work.

Web-crawling is another research area that study how to obtain the most recent snapshots of the web.
However, it differs from our model in two key points: our model allows items to propagate their copies, and
they will be caught if any of their copies is discovered (where snapshots of a webpage belong to that page
only), and all the generated items should be discovered (not just the recent ones) [8, 32].
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The goal of the News and Feed Aggregation problem is to capture updates in news websites (e.g. by
RSS feeds) [3, 15, 28, 30]. Our model differs from that setting in that we consider copies of the same news
in different web sites as equivalent and therefore are only interested in discovering one of the copies.

4 The WIGGINS Algorithm
In this section we present the algorithm wiggins (and its variants) for solving the Optimal Probing Schedule
Problem (θ, c)-OPSP for generating process Γ = (F , π) on a graph G = (V,E).

We start by assuming that we have complete knowledge of Γ, i.e., we know F and π. This strong
assumption allows us to study the theoretical properties of the cost function and motivates the design of
our algorithm, wiggins, to compute an optimal schedule. We then remove the assumption and show how
we can extend wiggins to only use a collection of observations from Γ. Then we discuss how to recalibrate
our algorithms when the parameters of the process (e.g., π or F) change over time. Finally, we show an
algorithm for the MapReduce framework that allows us to scale to large networks.

4.1 Computing the Optimal Schedule
We first conduct a theoretical analysis of the cost function costθ, and then use the results to develop wiggins,
our algorithm to compute the optimal c-schedule (i.e., solve the (θ, c)-OPSP).

4.1.1 Analysis of the cost function

Assume for now that we know Γ, i.e., we have complete knowledge of F and π. Under this assumption, we
can exactly compute the θ-cost of a c-schedule.

Lemma 1. Let p = (p1, . . . , pn) be a c-schedule. Then

costθ(p) := lim
t→∞

1
t

t∑
t′=0

E[Lθ(t′)] =
∑
S∈F

π(S)
1− θ(1− p(S))c , (1)

where p(S) =
∑
v∈S pv.

Proof. Let t be a time step, and consider the quantity E[Lθ(t)]. By definition we have

E[Lθ(t)] = E

 ∑
(t′,S)∈Nt

fθ(t, t′, S)

 = E

 ∑
(t′,S)∈Nt

θt−t
′

 ,
where Nt is the set of uncaught items at time t. Let now, for any t′ ≤ t, Nt,t′ ⊆ Nt be the set of uncaught
items in the form (t′, S). Then we can write

E[Lθ(t)] = E

 t∑
t′=0

∑
(t′,S)∈Nt,t′

θt−t
′

 .

Define now, for each S ∈ F , the random variable XS,t′,t which takes the value θt−t′ if (t′, S) ∈ Nt,t′ , and 0
otherwise. Using the linearity of expectation, we can write:

E[Lθ(t)] =
∑
S∈F

t∑
t′=0

E[XS , t
′, t]

=
∑
S∈F

t∑
t′=0

θt−t
′
Pr(XS,t,t′ = θt−t

′
) . (2)
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The r.v. XS,t,t′ takes value θt−t
′ if and only if the following two events E1 and E2 both take place:

• E1: the set S ∈ F belongs to It′ , i.e., is generated by Γ at time t′;
• E2: the item (t′, S) is uncaught at time t. This is equivalent to say that no node v ∈ S was probed in

the time interval [t′, t].

We have Pr(E1) = π(S), and
Pr(E2) = (1− p(S))c(t−t

′) .

The events E1 and E2 are independent, as the process of probing the nodes is independent from the process
of generating items, therefore, we have

Pr(XS,t,t′ = θt−t
′
) = Pr(E1) Pr(E2) = π(S)(1− p(S))c(t−t

′) .

We can plug this quantity in the rightmost term of (2) and write

lim
t→∞

E[Lθ(t)] = lim
t→∞

∑
S∈F

t∑
t′=0

θt−t
′
π(S)(1− p(S))c(t−t

′)

= lim
t→∞

∑
S∈F

π(S)
t∑

t′=0
(θ(1− p(S))c)t

′

=
∑
S∈F

π(S)
1− θ(1− p(S))c , (3)

where we used the fact that θ(1− p(S))c < 1. We just showed that the sequence (E[Lθ(t)])t∈N converges as
t → ∞. Therefore, its Cesàro mean, i.e., limt→∞

1
t

∑t
t′=0 E[Lθ(t)], equals to its limit [12, Sect. 5.4] and we

have

costθ(p) = lim
t→∞

1
t

t∑
t′=0

E[Lθ(t)] = lim
t→∞

E[Lθ(t)]

=
∑
S∈F

π(S)
1− θ(1− p(S))c .

We now show that costθ(p), as expressed by the r.h.s. of (1) is a convex function over its domain Sc, the
set of all possible c-schedules. We then use this result to show how to compute an optimal schedule.

Theorem 1. The cost function costθ(p) is a convex function over Sc.

Proof. For any S ∈ F , let
fS(p) = 1

1− θ(1− p(S))c .

The function costθ(p) is a linear combination of fS(p)’s with positive coefficients. Hence to show that costθ(p)
is convex it is sufficient to show that, for any S ∈ F , fS(p) is convex.

We start by showing that gS(p) = θ(1− p(S))c is convex. This is due to the fact that its Hessian matrix
is positive semidefinite [2]:

∂

∂pi∂pj
gS(p) =

{
θc(c− 1)(1− p(S))c−2 i, j ∈ S
0 otherwise

Let vS be a n × 1 vector in Rn such that its i-th coordinate is
[
c(c− 1)(1− p(S))c−2]1/2 if i ∈ S, and 0

otherwise. We can write the Hessian matrix of gS as

∇2gS = VS ∗ V T
S ,
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and thus, ∇2gS is positive semidefinite matrix and g is convex. From here, we have that 1− gS is a concave
function. Since fS(p) = 1

1−gS(p) and the function h(x) = 1
x is convex and non-increasing, then fS is a convex

function.

If for every v ∈ V , S = {v} belongs to F , then the function gS in the above proof is strictly convex, and
so is fS .

We then have the following corollary of Thm. 1.

Corollary 1. Any schedule p with locally minimum cost is an optimal schedule (i.e., it has global minimum
cost). Furthermore, if for every v ∈ V , {v} belongs to F , the optimal schedule is unique.

4.1.2 The Algorithm

Corollary 1 implies that one can compute an optimal c−schedule p∗ (i.e., solve the (θ, c)-OPSP) by solving
the unconstrained minimization of costθ over the set Sc of all c-schedules, or equivalently by solving the
following constrained minimization problem on Rn:

min
p∈Rn

costθ(p)
n∑
i=1

pi = 1

pi ≥ 0 ∀i ∈ {1, . . . , n}

(4)

Since the function costθ is convex and the constraints are linear, the optimal solution can, theoretically, be
found efficiently [2]. In practice though, available convex optimization problem solvers can not scale well
with the number n of variables, especially when n is in the millions as is the case for modern graphs like
online social networks or the Web. Hence we developed wiggins, an iterative method based on Lagrange
multipliers [2, Sect. 5.1], which can scale efficiently and can be adapted to the MapReduce framework of
computation [9], as we show in Sect. 4.4. While we can not prove that this iterative method always converges,
we can prove (Thm. 2) that (i) if at any iteration the algorithm examines an optimal schedule, then it will
reach convergence at the next iteration, and (ii) if it converges to a schedule, that schedule is optimal. In
Sect. 5 we show our experimental results illustrating the convergence of wiggins in different cases.

wiggins takes as inputs the collection F , the function π, and the parameters c and θ, and outputs a
schedule p which, if convergence (defined in the following) has been reached, is the optimal schedule. It starts
from a uniform schedule p(0), i.e., p(0)

i = 1/n for all 1 ≤ i ≤ n, and iteratively refines it until convergence (or
until a user-specified maximum number of iterations have been performed). At iteration j ≥ 1, we compute,
for each value i, 1 ≤ i ≤ n, the function

Wi(p(j−1)) :=
∑
S∈F

s.t. i∈S

θcπ(S)(1− p(j−1)(S))c−1

(1− θ(1− p(j−1)(S))c)2 (5)

and then set

p(j)
i = p(j−1)

i Wi(p(j−1))∑n
z=1 p(j−1)

z Wz(p(j−1))
.

The algorithm then checks whether p(j) = p(j−1). If so, then we reached convergence and we can return
p(j) in output, otherwise we perform iteration j + 1. The pseudocode for wiggins is in Algorithm 1. The
following theorem shows the correctness of the algorithm in case of convergence.

Theorem 2. We have that:

1. if at any iteration j the schedule p(j) is optimal, then wiggins reaches convergence at iteration j + 1;
and
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2. if wiggins reaches convergence, then the returned schedule p is optimal.
Proof. From the method of the Lagrange multipliers [2, Sect. 5.1], we have that, if a schedule p is optimal,
then there exists a value λ ∈ R such that p and λ form a solution to the following system of n+ 1 equations
in n+ 1 unknowns:

∇[costθ(p) + λ(p1 + . . .+ pn − 1)] = 0, (6)
where the gradient on the l.h.s. is taken w.r.t. (the components of) p and to λ (i.e., has n+ 1 components).

For 1 ≤ i ≤ n, the i-th equation induced by (6) is
∂

∂pi
costθ(p) + λ = 0,

or, equivalently, ∑
S∈F
s.t.i∈S

θcπ(S)(1− p(S))c−1

(1− θ(1− p(S))c)2 = λ . (7)

The term on the l.h.s. is exactly Wi(p). The (n + 1)-th equation of the system (6) (i.e., the one involving
the partial derivative w.r.t. λ) is

n∑
z=1

pz = 1 . (8)

Consider now the first claim of the theorem, and assume that we are at iteration j such that j is the
minimum iteration index for which the schedule p(j) computed at the end of iteration j is optimal. Then,
for any i, 1 ≤ i ≤ n, we have

Wi(p(j)) = λ

because p(j) is optimal and hence all identities in the form of (7) must be true. For the same reason, (8)
must also hold for p(j). Hence, for any 1 ≤ i ≤ n, we can write the value p(j+1)

i computed at the end of
iteration j + 1 as

p(j+1)
i = p(j)

i Wi(p(j))∑n
z=1 p(j)

z Wz(p(j))
= p(j)

i λ

1 · λ = p(j)
i ,

which means that we reached convergence and wiggins will return p(j+1), which is optimal.
Consider the second claim of the theorem, and let j be the first iteration for which p(j) = p(j−1). Then

we have, for any 1 ≤ i ≤ n,

p(j)
i = p(j−1)

i Wi(p(j−1))∑n
z=1 p(j−1)

z Wz(p(j−1))
= p(j−1)

i .

This implies

Wi(p(j−1)) =
n∑
z=1

p(j−1)
z Wz(p(j−1)) (9)

and the r.h.s. does not depend on i, and so neither does Wi(p(j−1)). Hence we have W1(p(j−1)) = · · · =
Wn(p(j−1)) and can rewrite (9) as

Wi(p(j−1)) =
n∑
z=1

p(j−1)
z Wi(p(j−1)),

which implies that the identity (8) holds for p(j−1). Moreover, if we set

λ = W1(p(j−1))

we have that all the identities in the form of (7) hold. Then, p(j−1) and λ form a solution to the system (6),
which implies that p(j−1) is optimal and so must be p(j), the returned schedule, as it is equal to p(j−1)

because wiggins reached convergence.
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Algorithm 1: wiggins
input : F , π, c, θ, and maximum number T of iterations
output: A c-schedule p (with globally minimum θ-cost, in case of convergence)

1 for i← 1 to n do
2 pi ← 1/n
3 end
4 for j ← 1 to T do
5 for i← 1 to n do
6 Wi ← 0
7 end
8 for S ∈ F do
9 for i ∈ S do

10 Wi ←Wi + θcπ(S)(1−p(S))c−1

(1−θ(1−p(S))c)2

11 end
12 end
13 pold ← p
14 for i← 1 to n do
15 pi ← pold

i ·Wi∑
i

pold
i
·Wi

16 end
17 if pold = p then // test for convergence
18 break
19 end
20 end
21 return p

4.2 Approximation through Sampling
We now remove the assumption, not realistic in practice, of knowing the generating process Γ exactly through
F and π. Instead, we observe the process using, for a limited time interval, a schedule that iterates over all
nodes (or a schedule that selects each node with uniform probability), until we have observed, for each time
step t in a limited time interval [a, b], the set It generated by Γ, and therefore we have access to a collection

I = {Ia, Ia+1, . . . , Ib}. (10)

We refer to I as a sample gathered in the time interval [a, b]. We show that a schedule computed with
respect to a sample I taken during an interval of `(I) = b− a = O(ε−2 logn) steps has cost which is within
a multiplicative factor ε ∈ [0, 1] of the optimal schedule. We then adapt wiggins to optimize with respect
to such sample.

We start by defining the cost of a schedule w.r.t. to a sample I.

Definition 1. Suppose p is a c-schedule and I is as in Equation (10), with `(I) = b − a. The θ-cost of p
w.r.t. to I denoted by costθ(p, I) is defined as

costθ(p, I) := 1
`(I)

∑
S∈I

1
1− θ(1− p(S))c .

For 1 ≤ i ≤ n, define now the functions

Wi(p, I) = 1
`(I)

∑
S∈I:i∈S

θc(1− p(S))c−1

(1− θ(1− p(S))c)2 .

9



We can then define a variant of wiggins, which we call wiggins-apx. The differences from wiggins
are:

1. the loop on line 8 in Alg. 1 is only over the sets that appear in at least one Ij ∈ I.
2. wiggins-apx uses the values Wi(p, I) (defined above) instead of Wi(p) (line 10 in Alg. 1);

If wiggins-apx reaches convergence, it returns a schedule with the minimum cost w.r.t. the sample I.
More formally, by following the same steps as in the proof of Thm. 2, we can prove the following result about
wiggins-apx.

Lemma 2. We have that:

1. if at any iteration j the schedule p(j) has minimum cost w.r.t. I, then wiggins-apx reaches convergence
at iteration j + 1; and

2. if wiggins-apx reaches convergence, then the returned schedule p has minimum cost w.r.t. I.

Let `(I) denote the length of the time interval during which I was collected. For a c-schedule p, costθ(p, I)
is an approximation of costθ(p), and intuitively the larger `(I), the better the approximation.

We now show that, if `(I) is large enough, then, with high probability (i.e., with probability at least
1 − 1/nr for some constant r), the schedule p returned by wiggins-apx in case of convergence has a cost
costθ(p) that is close to the cost costθ(p∗) of an optimal schedule p∗.

Theorem 3. Let r be a positive integer, and let I be a sample gathered during a time interval of length

`(I) ≥ 3(r ln(n) + ln(4))
ε2(1− θ) . (11)

Let p∗ be an optimal schedule, i.e., a schedule with minimum cost. If wiggins-apx converges, then the
returned schedule p is such that

costθ(p∗) ≤ costθ(p) ≤ 1 + ε

1− εcostθ(p∗) .

To prove Thm. 3, we need the following technical lemma.

Lemma 3. Let p be a c-schedule and I be a sample gathered during a time interval of length

`(I) ≥ 3(r ln(n) + ln(2))
ε2(1− θ) , (12)

where r is any natural number. Then, for every schedule p we have

Pr(|costθ(p, I)− costθ(p)| ≥ ε · costθ(p)) < 1
nr

.

Proof. For any S ∈ F , let XS be a random variable which is 1
1−θ(1−p(S))c with probability π(S), and zero

otherwise. Since p(S) ∈ [0, 1], we have
1 ≤ XS ≤

1
1− θ .

If we let X =
∑
S∈F XS , then

costθ(p) = E[X] =
∑
S∈F

E[XS ] ≥
∑
S∈F

π(S) . (13)

Let Z =
∑
S∈F π(S). Then we have

Z ≤ X ≤ Z

1− θ .
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Let Xi
S be the i-th draw of XS , during the time interval I it was sampled from, and define Xi =

∑
S∈F X

i
S .

We have
costθ(p, I) = 1

`(I)
∑
i

Xi .

Let now
µ = `(I)(1− θ)

Z
costθ(p) .

By using the Chernoff bound for Binomial random variables [27, Corol. 4.6], we have

Pr (|costθ(p, I)− costθ(p)| ≥ εcostθ(p))

= Pr
(∣∣∣∣∣∑

i

Xi − `(I)costθ(p)

∣∣∣∣∣ ≥ ε`(I)costθ(p)
)

= Pr
(∣∣∣∣∣1− θZ

∑
i

Xi − µ

∣∣∣∣∣ ≥ εµ
)
≤ 2 exp

(
−ε

2µ

3

)
≤ 2 exp

(
−ε

2`(I)(1− θ)costθ(p)
3Z

)
≤ 2 exp

(
−ε

2`(I)(1− θ)
3

)
,

where the last inequality follows from the rightmost inequality in (13). The thesis follows from our choice of
`(I).

We can now prove Thm. 3.

of Thm. 3. The leftmost inequality is immediate, so we focus on the one on the right. For our choice of `(I)
we have, through the union bound, that, with probability at least 1− 1/nr, at the same time:

(1− ε)costθ(p) ≤ costθ(p, I) ≤ (1 + ε)costθ(p), and
(1− ε)costθ(p∗) ≤ costθ(p∗, I) ≤ (1 + ε)costθ(p∗) (14)

Since we assumed that wiggins-apx reached convergence when computing p, then Thm. 3 holds, and p is
a schedule with minimum cost w.r.t. I. In particular, it must be

costθ(p, I) ≤ costθ(p∗, I) .

From this and (14), We then have

(1− ε)costθ(p) ≤ costθ(p, I) ≤ costθ(p∗, I) ≤ (1 + ε)costθ(p∗)

and by comparing the leftmost and the rightmost terms we get the thesis.

4.3 Dynamic Settings
In this section we discuss how to handle changes in the parameters F and π as the (unknown) generating
process Γ evolves over time. The idea is to maintain an estimation π̃(S) of π(S) for each set S ∈ F that we
discover in the probing process, together with the last time t such that an item (t, S) has been generated
(and caught at a time t′ > t). If we have not caught an item in the form (t′′, S) in an interval significantly
longer than 1/π̃(S), then we assume that the parameters of Γ changed. Hence, we trigger the collection of
a new sample and compute a new schedule as described in Sect. 4.2.

Note that when we adapt our schedule to the new environment (using the most recent sample) the
system converges to its stable setting exponentially (in θ) fast. Suppose L items have been generated since
we detected the change in the parameters until we adapt the new schedule. These items, if not caught, loose
their novelty exponentially fast, since after t steps their novelty is at most Lθt and decreases exponentially.
In our experiments (Sect. 5) we provide different examples that illustrate how the load of the generating
process becomes stable after the algorithm adapts itself to the changes of parameters.
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4.4 Scaling up with MapReduce
In this section, we discuss how to adapt wiggins-apx to the MapReduce framework [9]. We denote the
resulting algorithm as wiggins-mr.

In MapReduce, algorithms work in rounds. At each round, first a function map is executed independently
(and therefore potentially massively in parallel) on each element of the input, and a number of (or zero)
key-value pairs of the form (k, v) are emitted. Then, in the second part of the round, the emitted pairs are
partitioned by key and elements with the same key are sent to the same machine (called the reducer for that
key), where a function reduce is applied to the whole set of received pairs, to emit the final output.

Each iteration of wiggins-apx is spread over two rounds of wiggins-mr. At each round, we assume
that the current schedule p is available to all machines (this is done in practice through a distributed cache).
In the first round, we compute the values piWi, 1 ≤ i ≤ n, in the second round these values are summed to
get the normalization factor, and in the third round the schedule p is updated. The input in the first round
are the sets S ∈ I. The function map1(S) outputs, a key-value pair (i, vS) for each i ∈ S, with

vS = θc(1− p(S))c−1

`(I)(1− θ(1− p(S))c)2 .

The reducer for the key i receives the pairs (i, vS) for each S ∈ I such that i ∈ S, and aggregates them to
output the pair (i, gi), with

gi = pi
∑

vS = piWi .

The set of pairs (i, gi), 1 ≤ i ≤ n constitutes the input to the next round. Each input pair is sent to the
same reducer,3 which computes the value

g =
n∑
i=1

gi =
n∑
i=1

piWi

and uses it to obtain the new values pi = gi/g, for 1 ≤ i ≤ n. The reducer then outputs (i, pi). At this
point, the new schedule is distributed to all machines again and a new iteration can start.

The same results we had for the quality of the final schedule computed by wiggins-apx in case of
convergence carry over to wiggins-mr.

5 Experimental Results
In this section we present the results of our experimental evaluation of wiggins-apx.
Goals. First, we show that for a given sample I, wiggins-apx converges quickly to a schedule p∗ that mini-
mizes costθ(p, I) (see Thm. 2). In particular, our experiments illustrate that the sequence costθ(p(1), I), costθ(p(2), I), . . .
is descending and converges after few iterations. Next, we compare the output schedule of wiggins-apx to
four other schedules: (i) uniform schedules, (ii) proportional to out-degrees, (iii) proportional to in-degrees,
and (iv) proportional to undirected degrees, i.e., the number of incident edges. Specifically, we compute
the costs of these schedules according to a sample I that satisfies the condition in Lemma 3 and compare
them. Then, we consider a specific example for which we know the unique optimal schedule, and show that
for larger samples wiggins-apx outputs a schedule closer to the optimal. Finally, we demonstrate how our
method can adapt itself to the changes in the network parameters.
Environment and Datasets. We implemented wiggins-apx in C++. The implementation of wiggins-
apx never loads the entire sample to the main memory, which makes it very practical when using large
samples. The experiments were run on a Opteron 6282 SE CPU (2.6 GHz) with 12GB of RAM. We tested
our method on graphs from the SNAP repository4 (see Table 1 for details). We always consider the graphs
to be directed, replacing undirected edges with two directed ones.

3This step can be made more scalable through combiners, an advanced MapReduce feature.
4http://snap.stanford.edu
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Datasets #nodes #edges (|V1K |, |V500|, |V100|) gen. rate
Enron-Email 36692 367662 (9,23,517) 7.22
Brightkite 58228 428156 (2,7,399) 4.54
web-Notredame 325729 1497134 (43,80,1619) 24.49
web-Google 875713 5105039 (134,180,3546) 57.86

Table 1: The datasets, corresponding statistics, and the rate of generating new items at each step.

Generating process. The generating process Γ = (F , π) we use in our experiments (except those in
Sect. 5.1.1) simulates an Independent-Cascade (IC) model [17]. Since explicitly computing π(S) in this case
does not seem possible, we simulate the creation of items according to this model as follows. At each time
t, items are generated in two phases: a “creation” phase and a “diffusion” phase. In the creation phase, we
simulate the creation of “rumors” at the nodes: we flip a biased coin for each node in the graph, where the
bias depends on the out-degree of the node. We assume a partition of the nodes into classes based on their
out-degrees, and, we assign the same head probability for the biased coins of nodes in the same class, as
shown in Table 2. In Table 1, for each dataset we report the size of the classes and the expected number
of flipped coins with outcome head at each time (rightmost column). Let now v be a node whose coin had

Class Nodes in class Bias

V1K {i ∈ V : deg+(i) ≥ 1000} 0.1
V500 {i ∈ V : 500 ≤ deg+(i) < 1000} 0.05
V100 {i ∈ V : 100 ≤ deg+(i) < 500} 0.01
V0 {i ∈ V : deg+(i) < 100} 0.0

Table 2: Classes and bias for the generating process.

outcome head in the most recent flip. In the “diffusion” phase we simulate the spreading of the “rumor”
originating at v through network according to the IC model, as follows. For each directed edge e = u→ w we
fix a probability pe that a rumor that reached u is propagated through this edge to node w (as in IC model),
and events for different rumors and different edges are independent. Following the literature [5, 6, 16, 17, 31],
we use pu→w = 1

deg−(w) . If we denote with S the final set of nodes that the rumor created at v reached
during the (simulated) diffusion process (which always terminates), we have that through this process we
generated an item (t, S), without the need to explicitly define π(S).

5.1 Efficiency and Accuracy
In Sect. 4.1 we showed that when a run of wiggins-apx converges (according to a sample I) the computed
c-schedule is optimal with respect to the sample I (Lemma 2). In our first experiment, we measure the rate
of convergence and the execution time of wiggins-apx. We fix ε = 0.1, θ = 0.75, and consider c ∈ {1, 3, 5}.
For each dataset, we use a sample I that satisfies (12), and run wiggins-apx for 30 iterations. Denote the
schedule computed at round i by pi. As shown in Figure 1, the sequence of cost values of the schedules pi’s,
costθ(pi, I), converges extremely fast after few iterations.

For each graph, the size of the sample I, the average size of sets in I, and the average time of each
iteration is given in Table 3. Note that the running time of each iteration is a function of both sample size
and sizes of the sets (informed-sets) inside the sample.

Next, we extract the 1-schedules output by wiggins-apx, and compare its cost to four other natural
schedules: unif, outdeg, indeg, and totdeg that probe each node, respectively, uniformly, proportional to
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Figure 1: The cost of intermediate c-schedules at iterations of wiggins-apx according to I.
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Datasets |I| avg. item size avg. iter. time (sec)
Enron-Email 97309 12941.33 204.59
Brightkite 63652 17491.08 144.35
web-Notredame 393348 183.75 10.24
web-Google 998038 704.74 121.88

Table 3: Sample size, average size of items in the sample, and the running time of each iteration in wiggins-apx (for c = 1).

its out-degree, proportional to its in-degree, and proportional to the number of incident edges. Note that
for undirected graphs outdeg, indeg, and totdeg are essentially the same schedule.

To have a fair comparison among the costs of these schedules and wiggins-apx, we calculate their costs
according to 10 independent samples, I1, . . . , I10 that satisfy (12), and compute the average. The results
are shown in Table 4, and show that wiggins-apx outperforms the other four schedules.

Dataset wiggins-apx uniform outdeg indeg totdeg

Enron-Email 7.55 14.16 9.21 9.21 9.21
Brightkite 4.85 9.64 6.14 6.14 6.14
web-Notredame 96.10 97.78 97.37 97.43 97.40
web-Google 213.15 230.88 230.48 230.47 230.47

Table 4: Comparing the costs of 5 different 1-schedules.

5.1.1 A Test on Convergence to Optimal Schedule

Here, we further investigate the convergence of wiggins-apx, using an example graph and process for which
we know the unique optimal schedule. We study how close the wiggins-apx output is to the optimal
schedule when (i) we start from different initial schedules, p0, or (ii) we use samples I’s obtained during
time intervals of different lengths.

SupposeG = (V,E) is the complete graph where V = [n]. Let Γ = (F , π) for F = {S ∈ 2[n] | 1 ≤ |S| ≤ 2},
and π(S) = 1

|F| . It is easy to see that costθ(p) is a symmetric function, and thus, the uniform schedule is
optimal. Moreover, by Corollary 1 the uniform schedule is the only optimal schedule, since {v} ∈ F for
every v ∈ V . Furthermore, we let θ = 0.99 to increase the sample complexity (as in Lemma 3) and make it
harder to learn the uniform/optimal schedule.

In our experiments we run the wiggins-apx algorithm, using (i) different random initial schedules, and
(ii) samples I obtained from time intervals of different lengths. For each sample, we run wiggins-apx
10 times with 10 different random initial schedules, and compute the exact cost of each schedule, and its
variation distance to the uniform schedule. Our results are plotted in Figure 2, and as shown, by increasing
the sample size (using longer time intervals of sampling) the output schedules gets very close to the uniform
schedule (the variance gets smaller and smaller).

5.2 Dynamic Settings
In this section, we present experimental results that show how our algorithm can adapt itself to the new
situation. The experiment is illustrated in Fig. 3. For each graph, we start by following an optimal 1-
schedule in the graph. At the beginning of each “gray” time interval, the labels of the nodes are permuted
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Figure 2: The cost of wiggins-apx outputs and their variation distance to the optimal schedule: The top and bottom edge of each
box are the 25th and 75th percentiles respectively , and the median (50th percentile) is shown by a red line segment. The + symbols
denote outliers, i.e., points larger than q3 + 1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1), where q1 and q3 are the 25th and 75th

percentiles, respectively. The whiskers extend to the most extreme data points that are not outliers.

randomly, to impose great disruptions in the system. Following that, at the beginning of each “green” time
interval our algorithm starts gathering samples of Γ. Then, wiggins-apx computes the schedule for the
new sample, using 50 rounds of iterations, and starts probing. The length of each colored time interval is
R = 3(log(n)+log(2))

ε2(1−θ) , for ε = 0.5 and θ = 0.75, motivated by Theorem 3.
Since the cost function is defined asymptotically (and explains the asymptotic behavior of the system

in response to a schedule), in Figure 3 we plot the load of the system Lθ(t) over the time (blue), and the
average load in the normal and perturbed time intervals (red). Based on this experiment, and as shown
in Figure 3, after adapting to the new schedule, the effect of the disruption caused by the perturbation
disappears immediately. Note that when the difference between the optimal cost and any other schedule is
small (like web-Notredame), the jump in the load will be small (e.g., as shown in Figure 1 and Table 4, the
cost of the initial schedule for web-Notredame is very close the optimal cost, obtained after 30 iteration).

6 Conclusions
We formulate and study the (θ, c)-Optimal Probing Schedule Problem, which requires to find the best probing
schedule that allows an observer to find most pieces of information recently generated by a process Γ, by
probing a limited number of nodes at each time step.

We design and analyze an algorithm, wiggins, that can solve the problem optimally if the parameters
of the process Γ are known, and then design a variant that computes a high-quality approximation of the
optimum schedule when only a sample of the process is available. We also show that wiggins can be adapted
to the MapReduce framework of computation, which allows us to scale up to networks with million of nodes.
The results of experimental evaluation on a variety of graphs and generating processes show that wiggins
and its variants are very effective in practice.

Interesting directions for future work include generalizing the problem to allow for non-memoryless sched-
ules and different novelty functions.
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