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Abstract We study the problem of graph summarization. Given a large graph we
aim at producing a concise lossy representation (a summary) that can be stored in
main memory and used to approximately answer queries about the original graph
much faster than by using the exact representation.

In this work we study a very natural type of summary: the original set of
vertices is partitioned into a small number of supernodes connected by superedges
to form a complete weighted graph. The superedge weights are the edge densities
between vertices in the corresponding supernodes. To quantify the dissimilarity
between the original graph and a summary, we adopt the reconstruction error and
the cut-norm error. By exposing a connection between graph summarization and
geometric clustering problems (i.e., k-means and k-median), we develop the first
polynomial-time approximation algorithms to compute the best possible summary
of a certain size under both measures.

We discuss how to use our summaries to store a (lossy or lossless) compressed
graph representation and to approximately answer a large class of queries about
the original graph, including adjacency, degree, eigenvector centrality, and triangle
and subgraph counting. Using the summary to answer queries is very efficient as
the running time to compute the answer depends on the number of supernodes in
the summary, rather than the number of nodes in the original graph.

A preliminary version of this work appeared in the proceedings of IEEE ICDM’14 (Riondato
et al, 2014).
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1 Introduction

Data analysts in several application domains (e.g., social networks, molecular bi-
ology, communication networks, and many others) routinely face graphs with mil-
lions of vertices and billions of edges. In principle, this abundance of data should
allow for a more accurate analysis of the phenomena under study. However, as the
graphs under analysis grow, mining and visualizing them become computationally
challenging tasks. In fact, the running time of most graph algorithms grows with
the size of the input (number of vertices and/or edges): executing them on huge
graphs might be impractical, especially when the input is too large to fit in main
memory.

Graph summarization speeds up the analysis by creating a lossy concise repre-
sentation of the graph that fits into main memory. Answers to otherwise expensive
queries can then be computed using the summary without accessing the exact
representation on disk. Query answers computed on the summary incur in a mini-
mal loss of accuracy. When multiple graph analysis tasks can be performed on the
same summary, the cost of building the summary is amortized across its life cycle.
Summaries can also be used for privacy purposes (LeFevre and Terzi, 2010), to
create easily interpretable visualizations of the graph (Navlakha et al, 2008), and
to store a compressed representation of the graph, either lossless or lossy (as we
do in Sect. 5).

The biggest challenge in graph summarization is developing efficient algorithms
to build high-quality summaries, i.e., summaries that closely resemble the original
graphs while respecting the space requirements specified by the user.

1.1 Background and related work

A wide variety of concepts have been explored in the literature under the name of
graph summarization, each tailored to a different application.

LeFevre and Terzi (2010) propose to use an enriched “supergraph” as a sum-
mary, associating an integer to each supernode (a set of vertices) and to each
superedge (an edge between two supernodes), representing respectively the num-
ber of edges (in the original graph) between vertices in the supernode and between
the two sets of vertices connected by the superedge, respectively. From this lossy
representation one can infer an expected adjacency matrix, where the expectation is
taken over the set of possible worlds (i.e., graphs that are compatible with the sum-
mary). Thus, from the summary one can derive approximated answers for graph
properties queries, as the expectation of the answer over the set of possible worlds.
The GraSS algorithm by LeFevre and Terzi (2010) follows a greedy heuristic re-
sembling an agglomerative hierarchical clustering using Ward’s method (Ward,
1963) and as such can not give any guarantee on the quality of the summary.
We propose algorithms to compute summaries of guaranteed quality (a constant
or polynomial factor from the optimal). This theoretical property is also verified
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empirically (see Sect. 6): our algorithms build more representative summaries and
are much more efficient and scalable than GraSS in building those summaries.

Navlakha et al (2008) propose a summary consisting of two components: a
graph of “supernodes” (sets of nodes) and “superedges” (sets of edges), and a ta-
ble of “corrections” representing the edges that should be removed from or added
to the näıve reconstruction of the summary in order to obtain the exact graph. A
different approach followed by Tian et al (2008) and Liu et al (2012), for graphs
with labelled vertices, is to create “homogeneous” supernodes, i.e., to partition ver-
tices so that vertices in the same set have, as much as possible, the same attribute
values. These contributions are mostly focused on storing a highly compressed ver-
sion of the graph. By contrast, our goal is to develop a summary that, while small
enough to be stored in limited space (e.g., in main memory), can also be used to
compute approximate but fast answers to queries about the original graph.

Toivonen et al (2011) propose an approach for graph summarization tailored to
weighted graphs, with the goal of creating a summary that preserves the distances
between vertices. Fan et al (2012) present two different summaries for classes of
graph queries, one for reachability queries and one for graph patterns. Hernández
and Navarro (2011) focus instead on neighbor and community queries, and Maser-
rat and Pei (2010) just on neighbor queries. These proposals are highly query-
specific, while our summaries are general-purpose and can be used to answer dif-
ferent types of queries (see Sect. 5).

Graph summarization must not be confused with graph clustering, whose goal
is to find groups of vertices that are highly connected within their group and are
well-separated from other groups (Schaeffer, 2007). Graph summarization instead
aims to group together vertices that have similar connection patterns with the rest
of the graph.

Although graph summarization can be used for storing a concise representation
of the graph, it is different from classic graph compression (Boldi and Vigna, 2004;
Boldi et al, 2009, 2011) which is concerned with developing algorithms and data
structures to efficiently store and retrieve an exact representation of the graph
using the minimum possible space. Despite the effectiveness achieved by existing
methods for graph compression, these may not be sufficient to store the graph in
main memory, and do not solve the problem of speeding up the computation of
graph properties by analyzing a concise representation.

Summaries are also used for graph anonymization (Hay et al, 2010), where the
task is to publish network data in such a way that the identity of users (seen as
nodes of a graph) and the relationship among them (the edges) is kept confidential
when the published data is analyzed. Hay et al (2010) use a definition of summary
(called generalized graph in their work) similar to ours and show a number of results
on the use of the summary as the published version of the data. The analyst can
then sample from the possible worlds consistent with the summary and use the
sample to study properties of the network. They show, for example, that if each
supernode has size at least k (i.e., it contains at least k nodes), then k-anonymity is
preserved. They present a local-search algorithm to build a summary, guided by the
goal of maximizing the likelihood of the original graph assuming a uniform prior
over the possible worlds. Our method can be extended with minor modifications to
this setting. Similar approaches and extensions for graph anonymization have been
presented in the literature (Campan and Truta, 2009; Cormode et al, 2010; Tassa
and Cohen, 2013; Zheleva and Getoor, 2008). They often use clustering according
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to different error measures, sometimes quite similar to the `-reconstruction errors
considered in this work. On the other hand, they usually do not build summaries
with an user-specified number of summary, and instead take a parameter k to
specify the minimum size (i.e., number of nodes) in a supernode. Moreover none
of these works though present algorithms with provable approximation quality
guarantees, while all our algorithms return a solution that is a constant factor
from the optimal.

A preliminary version of this work appeared in the proceedings of IEEE ICDM’14
(Riondato et al, 2014). The present manuscript extends the preliminary conference
version in many different and substantial directions. Firstly, we introduce a new
definition of our graph summarization problem based on the cut-norm error. We
provide an algorithm for the above problem that relies on creating a weakly-regular
partition, which also gives the first algorithm to compute an approximation to the
best weakly-regular partition of size k. Secondly, we present additional discussion
on the quality of the output of our algorithm as a solution for the problem posed
by LeFevre and Terzi (2010), (i.e., for the expected adjacency matrix), and on
using the summary for solving queries and for compression. Finally we report ad-
ditional experimental results both for the `-reconstruction error and (all new) for
the cut-norm reconstruction error. We also extend the discussion of previous work,
and the presentation and discussion of our results, including additional examples
and intuition.

1.2 Contributions and Roadmap

In this work we study the graph summarization problem according to a definition
that generalizes the one by LeFevre and Terzi (2010), devising the first polynomial-
time approximation algorithms. More in details, our contributions are as follows:

– In Sect. 2 we formalize the problem of graph summarization, and discuss several
error measures: the `p-reconstruction error (previously employed by LeFevre
and Terzi (2010)) and the cut-norm error, a measure rooted in extremal graph
theory (Lovász, 2012) whose use we propose to address certain shortcomings
of the `p errors.

– In Sect. 3, we draw a connection between graph summarization and geometric
clustering (i.e., k-median/means) that allows us to develop the first algorithms
to build k-summaries (summaries with k supernodes) of guaranteed quality
according to the `1 and `2-reconstruction errors. Our algorithms compute a
constant-factor approximation to the best k-summary and run in time roughly
n · k. Previously, only heuristics with unbounded approximation factors and
high running times were known (LeFevre and Terzi, 2010).

– In Sect. 4 we present the approximation algorithm for the cut-norm case. We
exploit a connection between high-quality summaries that minimize the cut-
norm error and weakly-regular partitions of a graph (Frieze and Kannan, 1999),
a variant of the concept used in the Szemerédi Regularity Lemma (Szemerédi,
1976). The algorithm achieves a polynomial approximation guarantee. Ours is
also the first algorithm to find an approximation of the best weakly-regular
k-partition.
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– Several applications are discussed in Sect. 5. First we show that a summary
with low cut-norm error provides approximation algorithms for graph parti-
tioning problems such as MaxCut and correlation clustering. We then discuss
the use of our summaries for storing a compressed (lossy or lossless) represen-
tation of the graph. Finally, we show how to use the summary to accurately
answer important classes of queries about the original graph, including adja-
cency queries and triangle counting.

– An extensive experimental evaluation of the performance of our algorithms for
summary construction and query answering, and a comparison with existing
methods (LeFevre and Terzi, 2010) complete our work (Sect. 6).

We believe that the connections with theoretical results that we exploit in this
paper might foster further insights to solve important problems in graph mining.
The reduction from approximate graph summarization to k-means/median clus-
tering (Sect. 3) is of independent interest. One of the advantages of this approach
is that it allows to leverage the large body of work on the latter topic; for example,
one could use parallel implementations of k-means (Bahmani et al, 2012) to par-
allelize the summary construction. The Szemerédi Regularity Lemma (Szemerédi,
1976) and its numerous variants (which we exploit in Sect. 4) can be a powerful
addition to the toolkit of the graph mining algorithm designer.

2 Problem definition

We consider a simple, undirected1 graph G = (V,E) with |V | = n. In the rest
of the paper, the key concepts are defined from the standpoint of the symmetric
adjacency matrix AG of G. For the sake of generality we allow the edges to be
weighted (so the adjacency matrix is not necessarily binary) and we allow self-loops
(so the diagonal of the adjacency matrix is not necessarily all-zero).

Graph summaries. Given a graph G = (V,E) and k ∈ N, a k-summary S of
G is a complete undirected weighted graph S = (V ′, V ′ × V ′) that is uniquely
identified by a k-partition V ′ of V (i.e., V ′ = {V1, . . . , Vk}, s.t. ∪i∈[1,k]Vi = V and
∀i, j ∈ [1, k], i 6= j, it holds Vi ∩ Vj = ∅). The vertices of S are called supernodes.
There is a superedge eij for each unordered pair of supernodes (Vi, Vj), including
(Vi, Vi) (i.e., each supernode has a self-loop eii). Each superedge eij has a weight,
corresponding to the density of edges between Vi and Vj :

dG(i, j) = dG(Vi, Vj) = eG(Vi, Vj)/(|Vi||Vj |),

where for any two sets of vertices S, T ⊆ V , we denote

eG(S, T ) =
∑

i∈S,j∈T
AG(i, j) .

Observe that if S and T overlap, each non-loop edge with both endpoints in S ∩T
is counted twice for eG(S, T ).

We define the density matrix of S as the k×k matrix AS with entries AS(i, j) =
dG(i, j), 1 ≤ i, j ≤ k. For each v ∈ V , we also denote by s(v) the unique element

1 We discuss the case of directed graphs in Sect. 3.5.
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w of S (i.e., a supernode) such that v ∈ w. The density matrix AS ∈ Rk×k can be

lifted to the matrix A↑S ∈ Rn×n defined as

A↑S(v, w) = AS(s(v), s(w)) .

We justify the use of the lifted matrix in Sect. 3.1. Our lifted matrix is slightly
different from the expected adjacency matrix defined by LeFevre and Terzi (2010),
which can also be computed from our summary (see Sect. 5). The difference affects
the values of entries in diagonal blocks. In Section 3.4 we show that our algorithms
also approximate the partition that minimizes the error from the expected adja-
cency matrix.

Partition-constant matrices. Given a k-partition P = {S1, . . . , Sk} of [n], we say
that a symmetric n × n matrix M with real entries is P-constant if the Si × Sj
submatrix of M is constant, 1 ≤ i, j ≤ k. More formally, M is P-constant if for
all pairs (i, j), 1 ≤ i, j ≤ k, there is a constant cij = cji such that M(p, q) = cij
for each pair (p, q) where p ∈ Si and q ∈ Sj . We also say that M is k-constant,
to highlight the size of the partition. It should be clear from the definition that
the lifted adjacency matrix of a k-summary S of a graph G is PS-constant for the
partition PS of the nodes of G into the supernodes of S.

An input graph, a possible summary, and the corresponding lifted matrix are
exemplified in Figure 1 and Table 1.

2 1 

3 

4 7 5 

0 

7/9 

3/4 

1/4 

1/3 

1/3 

{3,4,5} 

{6,7} 

{1,2} 

6 

Fig. 1: A graph G (left) and one possible summary S (right).

1 2 3 4 5 6 7
1 0 0 1/3 1/3 1/3 1/4 1/4
2 0 0 1/3 1/3 1/3 1/4 1/4
3 1/3 1/3 7/9 7/9 7/9 1/3 1/3
4 1/3 1/3 7/9 7/9 7/9 1/3 1/3
5 1/3 1/3 7/9 7/9 7/9 1/3 1/3
6 1/4 1/4 1/3 1/3 1/3 3/4 3/4
7 1/4 1/4 1/3 1/3 1/3 3/4 3/4

Table 1: The lifted matrix A↑S corresponding to the S in Figure 1.
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Problem definition. The number of possible summaries is huge (there is one for
each possible partitioning of V ), so we need efficient algorithms to find the sum-
mary that best resembles the graph. This goal is formalized in Problem 1, which
is the focus of this work.

Problem 1 (Graph Summarization) Given a graph G = (V,E) with |V | = n,

and k ∈ N, find the k-summary S∗, such that A↑S∗ minimizes the error err(AG, A
↑
S∗)

for some error function err : Rn×n × Rn×n → [0,∞).

The function err expresses the dissimilarity between the original adjacency
matrix of G and the lifted matrix obtained from the summary. Different definitions
for err are possible and different algorithms may be needed to find the optimal
summary S∗ according to different measures. In the following section we present
some of these measures and discuss their properties.

2.1 The `p-reconstruction error

Let p ∈ R, p ≥ 1. Given a graph G with adjacency matrix AG and a summary S
with lifted adjacency matrix A↑S , the `p-reconstruction error of S is defined as the

entry-wise p-norm of the difference between AG and A↑S :

errp(AG, A
↑
S) = ‖AG −A↑S‖p =

 |V |∑
i=1

|V |∑
j=1

|AG(i, j)−A↑S(i, j)|p
1/p

.

For example, consider the graph G and the summary S represented in Figure 1,
whose lifted adjacency matrix is presented in Table 1. We have:

err1(AG, A
↑
S) =

329

18
= 18.27 and err2(AG, A

↑
S) =

√
11844

1296
= 3.023059525 . (1)

If AG has entries in [0, 1] then errp(AG, A
↑
S) ∈ [0, n2/p]. Of special interest for us

are the `1 and `2-reconstruction errors. These are very natural measures of the
quality of a summary: e.g., the algorithms by LeFevre and Terzi (2010) try to
minimize the `1-reconstruction error.

Computational considerations. The `p norms can be computed in timeO(n2) if p =
O(1). If the original graph G = (V,E) is unweighted, it is possible to compute the
`p-reconstruction errors in time O(k2) from the k-summary S = (V ′, V ′×V ′) itself.
Indeed, given the partition V ′ = {V1, . . . , Vk} of V , let αij = eG(Vi, Vj)/(|Vi||Vj |)
denote the superedge densities, for i, j ∈ [k]. A simple calculation shows that, for
p ≥ 1,

errp(A↑S , AG)p =
∑
i,j∈[k]

|Vi||Vj |αij(1− αij)
(

(1− αij)p−1 + αp−1
ij

)
.

From this we also get that, for any summary S,

err2(A↑S , AG)2 = 2 · err1(A↑S , AG) . (2)
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For example, this is the case for the errors reported in (1). Thus, a partition that
minimizes the `2-reconstruction error also minimizes the `1-reconstruction error.
A similar statement holds approximately (up to constant factors) for the `p and
`q-reconstruction errors where 1 ≤ p, q ≤ O(1), so for unweighted graphs the exact
choice of p is not crucial.

Discussion. Despite their naturality, these measures have some shortcomings. Con-
sider an unweighted graph G. One can easily produce an uninteresting summary
with only one supernode corresponding to V and `1-reconstruction error at most
n2. On the other hand, a low (say o(n2)) `1-reconstruction error would imply that
most pairs of vertices in any supernode have almost exactly the same neighbor-
hoods in G: a summary with such low error would be very accurate and useful.
Unfortunately, herein lies the main drawback of reconstruction error: for many
graphs, k-summaries may achieve such a low reconstruction error only for very
high values of k, often close to n.

As a simple idealized example, consider an Erdős-Renyi graph G drawn from
the distribution Gn,1/2, where each pair of vertices is linked by an edge with
probability 1/2. Given any two vertices in G, the size of the symmetric difference
between their sets of neighbours is n

2 ±
√
n logn with high probability, and we

incur in a n
2 − o(n) cost whenever we put two vertices into the same supernode.

Hence, even for k = n/2, the reconstruction error of any k-summary must be as
high as n2/9.

As far as the input graph is not random, one may hope to find structure to
exploit for building the summary. From this perspective it might be useful to think
about the adjacency matrix AG of the input graph G as a sum AG = S+E where
S is a “structured” part captured by the summary, and E is a “residual” matrix
representing the error of the summary. The “smaller” E is, the better the summary.
In the next section we propose a measure that tries to quantify the residual error
not represented by the summary. This measure is based on the cut norm, which
plays an essential role in the theory of graph limits and property testing (Lovász,
2012).

2.2 The cut-norm error

The cut norm of an n×m matrix A is the maximum absolute sum of the entries
of any of its submatrices (Frieze and Kannan, 1999):

‖A‖� = max
S,T⊆[n]

|A(S, T )| = max
S,T⊆[n]

∣∣∣∣∣∣
∑

i∈S,j∈T
Ai,j

∣∣∣∣∣∣ .
The cut distance between two n×nmatricesA andB is then defined by err�(A,B) =
‖A−B‖�. The cut-norm error of a summary S with respect to the graph G is
therefore

err�(AG, A
↑
S) = max

S,T⊆V
|eG(S, T )− eS↑(S, T )|,

which can be interpreted as the maximum absolute difference between the sum of
weights of the edges between any two sets of vertices in the original graph and the
same sum in the lifted summary. The cut norm is NP-hard to compute, but can
be approximated up to a constant factor via SDP (Alon and Naor, 2006).
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3 Summarization with reconstruction error

We now show a close connection between graph summarization and well-studied
geometric clustering problems (k-median/means).

3.1 The best matrix for a given partition

We now justify the use of the (P-constant) lifted adjacency matrix in our analysis.
We ask the following question:
Given p ≥ 1, a graph G = (V,E) (without loss of generality, let V = [n]) with
adjacency matrix AG, and a partition P = {S1, . . . , Sk} of [n], what P-constant
matrix B∗,pP minimizes

∥∥AG −B∗,pP ∥∥
p
?

As we now show, the lifted adjacency matrix is a good (constant) approxima-
tion to the matrix that answers this question.

Clearly it suffices to consider each pair of supernodes Si, Sj separately. For a
fixed pair, let X be a random variable representing the weight (in G) of an edge
(x, y) drawn uniformly at random from Si×Sj . We are looking for the real number
ap that minimizes E[|X − ap|p]. The value ap is known as the p-predictor of X.
Then B∗,pP (x, y) is exactly the p-predictor of the uniform distribution over the
multiset M(x, y) = {AG(v, w) | v ∈ s(x), y ∈ s(y)}, where s(v) denotes the unique
element of P (i.e., a set) to which v belongs. It is well-known that the 1-predictor
of X is its median, and its 2-predictor is its expectation (Williams, 1991). In other
words,

B∗,1P (x, y) = median({AG(v, w) | (v, w) ∈ s(v)× s(w)})

B∗,2P (x, y) =
∑

(v,w)∈s(v)×s(w)

AG(v, w)/(|s(x)||s(y)|) ,

where the argument to median is understood to be a multiset.
Note that B∗,2P = A↑SP , the lifted adjacency matrix of the summary SP corre-

sponding to P. In general, B∗,1P 6= B∗,2P , but we can still use A↑SP for the case p = 1

because it still provides a good approximation to B∗,1P , as shown in the following
lemma which is a corollary of Lemma 2.

Lemma 1 We have:∥∥∥AG −B∗,1P ∥∥∥
1
≤
∥∥∥AG −B∗,2P ∥∥∥

1
≤ 2 ·

∥∥∥AG −B∗,1P ∥∥∥
1

and ∥∥∥AG −B∗,2P ∥∥∥
2
≤
∥∥∥AG −B∗,1P ∥∥∥

2
≤
√

2 ·
∥∥∥AG −B∗,2P ∥∥∥

2
.

Lemma 2 Let X be a random variable with median m and expectation µ. Then

E[|X −m|] ≤ E[|X − µ|] ≤ 2 · E[|X −m|], (3)

and

E[|X − µ|2] ≤ E[|X −m|2] ≤ 2 · E[|X − µ|2] .



10 Matteo Riondato et al.

Proof The first inequality of each line follows from the fact thatm is the 1-predictor
and µ the 2-predictor. Now we bound the deviation between mean and median.
Observe that

|µ−m| = |E[X]−m| = |E[X −m]| ≤ E[|X −m|] ≤ E[|X − µ|] ≤ σ,

where σ =
√

Var[X] is the standard deviation of X and the last inequality is
Cauchy-Schwarz. This yields the other two inequalities:

E[|X − µ|] = E[|X −m+m− µ|] ≤ E[|X −m|] + |m− µ| ≤ 2 · E[|X −m|],

and, since E[|X − µ|2] = Var[X] = σ2,

E[|X −m|2] = Var[X] + (m− µ)2 ≤ 2 · E[|X − µ|]2 .

3.2 Connection with `pp clustering

We now show how the graph summarization problem is related to the `pp clustering

problem. In the `pp clustering problem, we are given n points a1, . . . , an ∈ Rd and

we need to find k centroids c1, . . . , ck ∈ Rd so as to minimize the cost function∑
n

∥∥ai − cl(k)

∥∥p
p
, where l(i) is the centroid closest to ai in the `p metric. When

p = 2, this is the k-means problem with `2 (Euclidean) metric; when p = 1, this
is the k-median problem with `1 metric. We consider the continuous version in
which the centroids are allowed to be arbitrary points in Rd.

Any choice of centroids c1, . . . , ck gives rise to a partition P of [n] that groups
together points having the same closest centroid (assuming a scheme to break ties).
Conversely, for any partition P = {S1, . . . , Sk} there is an optimal (i.e., minimizing
the `pp cost given P) choice c∗1, . . . , c

∗
k of centroids: c∗i is the coordinate-wise mean

of the vectors in Si when p = 2, and their coordinate-wise median when p = 1.
We show the following connections between clustering and summarization with

respect to the `2 and `1-reconstruction error respectively.

Theorem 1 Let S̄ be the k-summary induced by the partition of the rows of AG
with the smallest continuous `22 cost, and let S∗ be the optimal k-summary for G
with respect to the `2-reconstruction error. The `2-reconstruction error of S̄ is a
4-approximation to the best `2-reconstruction error:

err2(AG, A
↑
S̄) ≤ 4 · err2(AG, A

↑
S∗) .

Theorem 2 Let Ŝ be the k-summary induced by the partition of the rows of AG
with the smallest continuous `1 cost, and let S† be the optimal k-summary for G
with respect to the `1-reconstruction error. The `1-reconstruction error of S̄ is an
8-approximation to the best `1-reconstruction error:

err1(AG, A
↑
Ŝ

) ≤ 8 · err1(AG, A
↑
S†) .

Before we can prove these theorems we need some additional definitions and
lemmas.
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Smoothing projections and lifted matrices. Let P = {S1, . . . , Sk} be a partition
of [n] and let si be the n-dimensional vector associated to Si such that the jth

entry of si is 1 if j ∈ Si, and 0 otherwise. Write vi = si/
√
|Si|. Since ‖vi‖ = 1

and Si ∩ Sj = ∅ for i 6= j, the vectors {vi}i∈[k] are orthonormal. A sequence of
vectors v1, . . . ,vk ∈ Rn is partition-based if they arise in this way from a partition
of [n]. We say that a linear operator P : Rn → Rn is smoothing if it can be written
as P =

∑k
i=1 viv

ᵀ
i for a partition-based set of vectors v1, . . . ,vk. Since P 2 = P ,

P ᵀ = P and Pvi = vi, it follows that P is the orthogonal projection onto the
subspace generated by v1, . . . ,vk. It is also easy to check that a n × n matrix A
is P-constant if and only if PAP = A.

Given a k-summary S of G, let PS = {S1, . . . , Sk} be the partition of [n]
corresponding to S. Consider the smoothing projection P arising from PS as
described above.

Lemma 3 A↑S = PAGP .

Proof Let v1, . . . ,vk be the partition-based vectors arising from PS . Recall that
the entry A↑SP (p, q) of the lifted adjacency matrix A↑SP , where p ∈ Si and q ∈ Sj ,
is the density dG(Si, Sj) = sᵀiAGsj/(|Si||Sj |). Therefore

A↑S =
∑
i,j∈[k]

dG(Si, Sj)s
ᵀ
i sj =

∑
i,j∈[k]

sᵀiAGsj
|Si||Sj |

sᵀi sj

=
∑
i,j∈[k]

(vᵀiAGvj)v
ᵀ
i vj =

∑
i,j∈[k]

vᵀi (vᵀiAGvj)vj = PAGP .

To prove Theorem 1 and Theorem 2 we also make use of the three following
technical lemmas.

Lemma 4 Let P : Rn → Rn be an orthogonal projection and let ‖·‖ denote a ma-
trix norm that is (1) invariant under transposition and negation (‖X‖ = ‖−X‖ =
‖Xᵀ‖); and (2) contractive under P (for any n × n matrix X, ‖XP‖ ≤ ‖X‖).
Then for any symmetric or skew-symmetric2 matrix A, it holds that

‖A−AP‖
2

≤ ‖A− PAP‖ ≤ 2 ‖A−AP‖ .

Proof Using that P 2 = P and the triangle inequality for ‖·‖, we have

‖A−AP‖ = ‖A− PAP + PAP −AP‖
≤ ‖A− PAP‖+ ‖PAP −AP‖ = ‖A− PAP‖+ ‖(PAP −A)P‖
≤ ‖A− PAP‖+ ‖PAP −A‖ = 2 ‖A− PAP‖ .

Observe that if A is symmetric (Aᵀ = A) then (A−AP )ᵀ = Aᵀ−P ᵀAᵀ = A−PA,
whereas if A is skew-symmetric (Aᵀ = A) then (A−AP )ᵀ = −(A − PA); either
way, ‖A−AP‖ = ‖A− PA‖. Therefore

‖A− PAP‖ = ‖A−AP +AP − PAP‖ = ‖A−AP‖+ ‖(A− PA)P‖
≤ ‖A−AP‖+ ‖A− PA‖ = ‖A−AP‖+ ‖A−AP‖ = 2 ‖A−AP‖ .

2 A skew-symmetric matrix (also known as antisymmetric or antimetric matrix) is a square
matrix A whose transpose is also its negative: −A = Aᵀ.



12 Matteo Riondato et al.

Lemma 5 The `p norms (p ≥ 1) satisfy the conditions of Lemma 4 for any
smoothing projection P .

Proof Invariance under transposition and negation is trivial, so we only need to
check the second condition. To see it, write X by columns: X = (x1 | · · · | xn).
Then PX = (Px1 | · · · | Pxn) and ‖XP‖pp = ‖PX‖pp =

∑
i ‖Pxi‖

p
p, so it suffices

to show that ‖Py‖p ≤ ‖y‖p for p = 1, 2 and all y ∈ Rn. The reader can verify that
this follows from the power mean inequality:(

|
∑m
i=1 yi|
m

)p
≤
∑m
i=1 |yi|

p

m
.

The following result is an easy consequence of the definitions of smoothing
projection and cost of a clustering (i.e., of a choice of centroids).

Lemma 6 The `22 cost of the clustering associated with a partition P of the rows
of a matrix A ∈ Rn×n is ‖A−AP‖22, where P is the smoothing projection arising
from P.

We are now ready to prove Theorems 1 and 2, showing the connection between
summarization and geometric clustering.

Proof (Proof of Theorem 1) Let P denote a smoothing projection arising from
an arbitrary k-partition. Let PS̄ be the smoothing projection induced by S̄. By
Lemma 6, ‖AG −AGPS̄‖2 ≤ ‖AG −AGP‖2. Let PS∗ be the smoothing projection
associated with the partition which minimizes the `2-reconstruction error (i.e., the
one induced by S∗). Using Lemmas 4 and 5,

err2(AG, A
↑
S̄) = ‖AG − PS̄AGPS̄‖2 ≤ 2 ‖AG −AGPS̄‖2 ≤ 2 ‖AG −AGPS∗‖2
≤ 4 ‖AG − PS∗AGPS∗‖2 = 4 · err2(AG, A

↑
S∗) .

This concludes the proof for Theorem 1.

The proof for Theorem 2 follows the same steps but Lemma 1 must be taken
into account, resulting in an additional factor of 2 in the approximation guarantee.

It is not straightforward to suggest the use of one error measure or another,
except for the case of unweighted graphs in which case the `1- and `2-reconstruction
errors are connected by (2). Indeed the question is similar to asking whether one
should choose k-means or k-medians when clustering points in a geometric space:
the decision should be based on an analysis of the error measures and on what cost
function expresses the goals. We leave it for future work to investigate how different
measures impact the quality of approximate query answers using summaries.

3.3 An efficient algorithm for summarization

Theorems 1 and 2 show that building a graph summary of guaranteed quality with
regard to the `1 or `2-reconstruction error can be approximately reduced to solving
a clustering instance. We now turn our attention to how to do this efficiently.

Both k-median and k-means are NP-hard (Aloise et al, 2009; Dasgupta, 2008;
Megiddo and Supowit, 1984), but admit constant-factor approximation algorithms
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that run in time polynomial in the number of points (n), clusters (k), and the di-
mension of the space where the points reside (Arya et al, 2004; Jain and Vazirani,
2001; Mettu and Plaxton, 2003). In order to use these algorithms for our purposes,
we need to take care of the following bottlenecks: costly pairwise distances compu-
tation, high dimensionality, and large number of points. Exact computation of all
pairwise distances between the rows of the adjacency matrix can be rather expen-
sive: in the `2 norm, computing all distances between n points in Rd is equivalent
to multiplying a matrix with its transpose.3 We can avoid this by using approxi-
mate distances computed efficiently from a sketch of the adjacency matrix, i.e., a
matrix with the same number of rows but a logarithmic number of columns (In-
dyk, 2006);4 this also reduces the number of dimensions from n to O(logn). In
exchange for this speedup, the analysis needs to factor in the additional error, and
the fact that the approximate distances we work with will not satisfy the triangle
inequality, whereas the clustering algorithms we use are designed for metric spaces.

The O(1)-approximation algorithm by Mettu and Plaxton (2003) can be used
with the approximate distances computed from the sketch, but it runs in time
Õ(n2). To improve this we use a result by Aggarwal et al (2009) which adaptively
selects O(k) of the rows of the sketch so that the optimal k-median/means solution
obtained by clustering these rows gives a set of centers that can be used to obtain
a constant-factor approximation to the clustering problem for all the rows. By
running the algorithm of Mettu and Plaxton (2003) on the resultingO(k)×O(logn)

matrix, we obtain a constant factor approximation in time Õ(m + nk), where m
is the number of edges (or half the number of non-zero entries in AG, if G is
weighted). We formalize this intuition in Theorem 3, while Algorithm 1 presents
the pseudocode.

Algorithm 1: Graph summarization with `p-reconstruction error

Input : G = (V,E) with |V | = n, k ∈ N, p ∈ {1, 2}
Output: A O(1)-approximation to the best k-summary for G under the

`p-reconstruction error
// Create the n×O(logn) sketch matrix (Indyk, 2006)
S ← createSketch(AG, O(logn), p)
// Select O(k) rows from the sketch (Aggarwal et al, 2009)
R← reduceClustInstance(AG, S, k)
// Run the approximation algorithm by Mettu and Plaxton (2003) to obtain a
partition.
P ← getApproxClustPartition(p, k,R, S)
// Compute the densities for the summary
D ← computeDensities(P, AG)
return (P, D)

3 If v1, . . . , vn ∈ Rd, then ‖vi − vj‖22 = ‖vi‖22 + ‖vj‖22 − 2〈vi, vj〉. Since the quantities ‖vi‖22
can be easily precomputed, the problem reduces to computing all inner products 〈vi, vj〉. These
form the entries of AAᵀ, where A is the n× d matrix with rows v1, . . . , vn.

4 For `2, we can also use the Johnson-Lindenstrauss transform (Johnson and Lindenstrauss,
1984).
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Theorem 3 Let p ∈ {1, 2}. There exists an algorithm to compute an O(1)-approximation

to the best k-summary under the `p-reconstruction error in time Õ(m + nk) with
high constant probability.

Proof Approximate distance computation. Indyk (2006) gives a small-space
streaming algorithm for maintaining sketches of vectors so as to allow approximate
computation of their `p distance, where p ∈ (0, 2). It is shown in (Indyk, 2006,
Theorem 2) that, for p ∈ {1, 2} and ε, δ ∈ (0, 1), one can sketch n-dimensional
vectors whose entries are bounded by poly(n) so that:

– The sketch C(v) of v ∈ Rn uses space t = O(log(n/(δε)) log(1/δ)/ε2) and can
be computed in time O(1+ t ·nnz(v)), where nnz(v) is the number of non-zero
entries of v.

– Given C(v) and C(w), one can estimate ‖v − w‖p up to a factor of 1 + ε with

probability 1− δ − 1/n3 in time O(t).

We compute the sketch of all the rows of AG with ε = 1 and δ = 1/(200n2).
The result is an n × t-sized sketched matrix S, where t = O(logn). The running

time of this step is O(n + t · nnz(AG)) = Õ(m + n). For every pair of rows of
AG, we can use S to estimate their `p distance up to a factor of 2 with probability
1−1/(200n2)−1/n3 in time O(logn). Hence the estimation is good simultaneously
for all pairs of rows with probability 0.99− 1/n.

Approximate pseudometrics. Now let dij denote the `p distance between
rows i and j of AG, and let d̃ij denote their approximation based on the sketch
S. The true distances dij give rise to a pseudometric on the rows of AG. (They
are not necessarily a metric as dij may be zero for i = j if we have two identical
rows in AG.) On the other hand, the approximate distances do not satisfy the
triangle inequality, which may pose a problem for algorithms for metric k-median.

Nevertheless, using the fact that
d̃ij
dij
∈ [1/2, 2], one may verify that they form a

4-approximate pseudometric, i.e., they satisfy the following axioms with λ = 4:

– d̃ij ≥ 0
– d̃ii = 0,
– d̃ij = d̃ji = 0,
– d̃ij ≤ λ(d̃ik + d̃kj).

The p-th powers of the distances in a λ-approximate pseudometric yield a λp2p−1-
approximate pseudometric; this is a consequence of the arithmetic mean-geometric
mean inequality. Moreover, the largest ratio between two non-zero distances be-
tween rows of AG is bounded above by poly(n). Taking these observations together
we conclude that the numbers d̃pij give rise to an O(1)-approximate pseudometric
with distance ratio poly(n). Under this condition, most known metric k-median/k-
means algorithms, including the ones detailed below, guarantee a constant-factor
approximation (Aggarwal et al, 2009; Jain and Vazirani, 2001).

Clustering. Aggarwal et al (2009, Theorems 1 & 4) show that given a k-
means or k-median clustering instance S in which distance computations can be
performed in time O(t), one can select a subset X of r = O(k) points from S and
compute a weight assignment w : X → R such that
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– With 99% probability, if C ∈
(
X
k

)
5 is an α-approximate minimizer of

ρ(C) =
∑
x∈X

min
c∈C

w(c) · ‖x− c‖pp ,

then C is also an O(α)-approximate minimizer of

ρ′(C) =
∑
x∈S

min
c∈C
‖x− c‖pp .

– X and w can be computed in time O(nkt logn).

Here we say that C ∈
(
X
k

)
is an α-approximate minimizer of function f :

(
X
k

)
→ R+

if f(C) ≤ α · f(C′) for all C′ ∈
(
X
k

)
.

This means that one can solve a weighted k-median instance with O(k) points,
and derive from it a nearly optimal solution to the original n-point instance by
keeping the same set of centers and assigning every other point to its closest center;
the last step takes time O(nkt). To solve the smaller instance, we may use the
algorithm by Mettu and Plaxton (2003), which generalizes to weighted k-median
in a straightforward manner. The running time of Mettu and Plaxton’s algorithm
on an instance with O(k) points and an approximate pseudometric with distance
ratio r is O(k2+k log r). Hence we obtain a O(1)-approximation to the clustering of
the O(k) rows of S (where r = poly(n)) in time O(nk(logn)2+k2+kn+nk logn) =

Õ(nk).
Finally, observe that the distance approximation properties of d̃ij guaran-

tee that the optimal clustering of the rows of S is also a O(1)-approximation
to the optimal clustering of the rows in the original adjacency matrix, so an O(1)-
approximation to the former is a O(1)-approximation to the latter. Given the
partition defined by this nearly-optimal clustering, we can then compute the den-
sities in time O(m+ k2) = O(m+ nk), completing the proof.

3.4 Relationship with the expected adjacency matrix

Let P be a k-partition with associated smoothing projection P (see Section 3.2).
Let us assume A is the adjacency matrix of a loopless, unweighted graph and let
B = PAP . Let C be the expected adjacency matrix of A with respect to P, as
defined by LeFevre and Terzi (2010). Note that Cij = Bij whenever i and j belong
to different supernodes.

Denote by ni the size of the ith supernode of P, and by ei the number of
internal edges within the supernode. Write αi = 2ei/(ni(ni − 1)) ∈ [0, 1]. Direct
computation reveals that

|B −A|1 = |C −A|1 +
k∑
i=1

2(ni − 1)α2
i ,

implying

|C −A|1 ≤ |B −A|1 ≤ |C −A|1 + 2n− k.

5 We denote as
(X
k

)
the set of k-subsets of X, i.e., the subsets of X of size k.
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It follows that if C∗ is the optimal solution to the problem of finding a k-
partition whose expected adjacency matrix minimizes the `1 reconstruction error
with A, and B̂ is a constant-factor approximation to the problem of finding a
k-partition whose lifted matrix minimizes the `1 reconstruction error with A, then

|B̂ −A|1 ≤ O(|C∗ −A|1) +O(n).

That is, the partition returned by our method is, up to a small additive term of
O(n), within a constant factor of optimal in the sense of LeFevre and Terzi (2010).

3.5 Summaries for directed graphs

For directed graphs we employ two summaries rather than one. We decompose
the adjacency matrix A into the sum of a symmetric matrix B = (A + Aᵀ)/2
and a skew-symmetric matrix C = (A − Aᵀ)/2. Our algorithms then build k-
summaries SB and SC for B and C respectively. Since the quality guarantees of
our algorithms also apply to skew-symmetric matrices, (SB ,SC) is a high-quality
summary for the directed graph. Indeed, suppose we lift these summaries to obtain
two matrices B↑SB

and C↑SC
and let Â be the sum of B↑SB

and C↑SC
, then err(A, Â) ≤

err(B,B↑SB
) + err(C,C↑SC

).

4 Summarization with the cut-norm error

One of the cornerstone results in graph theory is the Szemerédi regularity lemma (Sze-
merédi, 1976): the vertex set of any graph can be partitioned into classes of ap-
proximately the same size in such a way that the number of edges between vertices
in different classes behaves almost randomly. Such a partition can be found in poly-
nomial time (Alon et al, 1994) and would be a powerful basis for a graph summary,
offering equally-sized parts and well-behaved densities. Unfortunately, the num-
ber of classes can be astronomically large (Gowers, 1997). Therefore, we focus on
weak regularity, a variant which requires substantially smaller partitions (Frieze
and Kannan, 1999).

4.1 Weak regularity and index

We now introduce two important concepts: weak regularity (related to the cut
norm) and index of a partition (related to the reconstruction error).

Given a graph G = (V,E), a partition P = {V1, . . . , Vk} of V is ε-weakly regular
if the cut-norm error of the lifted adjacency matrix of the summary induced by
P is at most εn2 (Frieze and Kannan, 1999). Equivalently, if for any pair of sets
S, T ⊆ V , we have

∣∣∣e(S, T )−
k∑
i=1

k∑
j=1

dG(Vi, Vj)|S ∩ Vi||T ∩ Vj |
∣∣∣ ≤ εn2.
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Any unweighted graph with average degree α = 2|E|/|V |2 ∈ [0, 1] admits an

ε-weakly regular partition with 2O(α log(1/α)/ε)2 parts (Frieze and Kannan, 1999).
This bound is tight (Conlon and Fox, 2012).

Note, however, that any particular graph of interest may admit much smaller
partitions. Dellamonica et al (Dellamonica et al, 2012, 2015) proved that the op-
timal deterministic algorithm to build a weakly ε-regular partition with at most
21/poly(ε) parts takes time c(ε)n2.

The index of a partition P = {V1, . . . , Vk} is defined as

ind(P) =
∑
i,j∈[k]

|Vi||Vj |
n2

d2
G(Vi, Vj) = Eu,v∈V [d2

G(s(u), s(v))].

The index is nonnegative and is bounded by the average density of the graph. It is
used as a potential function measuring progress towards a regular partition in all
proofs of the standard regularity lemma. Interestingly, on unweighted graphs the
sum of the index of P and the normalized squared `2-reconstruction error of P is
exactly the average density of the graph. Accordingly, finding the k-partition that
maximizes the index is equivalent to finding the k-summary whose lifted adjacency
matrix minimizes the `1-reconstruction error, implying a close relationship between
the two problems.

4.2 Relationship with clustering

To the best of our knowledge, the problem of constructing a partition of a given
size k that achieves the smallest possible cut-norm error for a given input graph
G has not been considered before. Existing algorithms take an error bound ε and

always produce a partition of size 2Θ(1/ε2), irrespective of whether much smaller
partitions with the same error exist for G (Frieze and Kannan, 1999).

Our algorithm to build a quasi-optimal summary that minimizes the cut-norm
error works by computing the k-median clustering of the columns of the square
of the adjacency matrix. After squaring the adjacency matrix, it follows the same
steps as the one we presented in Sect. 3.3 (see also Alg. 2).

We rely on the following result of Lovász:

Theorem 4 (Theorem 15.32(Lovász, 2012)) Consider the following distance
function δ between nodes of a graph G = (V,E) with |V | = n and adjacency matrix
AG:

δ(u, v) =

∑
w∈V |A2

G(u,w)−A2
G(v, w)|

n2
.

1. If P = {S1, . . . , Sk} is weakly ε-regular for G, then we can select a node vi from
each class Si such that the cost of the k-median solution {v1, . . . , vk} according
to δ is at most 4ε.

2. If the k-median cost of a set of centroids S = {v1, . . . , vk} ⊆ V according to δ
is ε, then the clustering induced by S forms a weakly 8

√
ε-regular partition for

G.

We then have the following result connecting the cost (error) of the weakly-
regular partition induced by the optimal k-median solution according to the δ
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distance function to the cost of the optimal (minimum error) weakly-regular par-
tition with k classes.

Corollary 1 Let OPTp be the cost (error) of the optimal (minimum error) weakly-
regular partition of V with k classes. The clustering induced by the optimal k-
median solution forms a partition that is a weakly-regular partition with cost at
most 16/

√
OPTp.

Proof Let OPTc be the cost of the optimal k-median solution. We know from
Theorem 4, point 1, that OPTc ≤ 4OPTp. Then

8
√
OPTc

OPTp
≤

8
√

4OPTp

OPTp
≤ 16√

OPTp
.

After squaring the adjacency matrix, we can proceed as in Section 3.3. Algorithm 2
presents the pseudocode for summarization w.r.t. the cut-norm error. The follow-
ing is an immediate consequence.

Theorem 5 Let ε∗ be the smallest ε such that there is a weakly ε-regular k-
partition of G. Then we can find an O(

√
ε∗)-weakly regular partition in time

O(nω).

Here ω < 2.3727 stands for the time bound in matrix multiplication (Vas-
silevska Williams, 2011); we assume ω > 2. The time complexity bound is dom-
inated by the cost of squaring the matrix and does not depend on ε∗. We ob-
serve that one could find a partition with the same guarantee in randomized time
O(n2 · poly(1/ε∗)) by performing a search on ε∗ and using sampling to estimate
the distances δ(u, v) up to poly(ε∗) additive accuracy.

Algorithm 2: Graph summarization with cut-norm error

Input : Graph G = (V,E) with |V | = n, integer k > 0
Output: An approximation to the best k-summary for G under the cut-norm error
// Square the adjacency matrix

Q← A2
G

// Create the n×O(logn) sketch matrix (Indyk, 2006)
S ← createSketch(Q,O(logn), 1)
// Select O(k) rows from the sketch (Aggarwal et al, 2009)
R← reduceClustInstance(Q,S, k)
// Run the approximation algorithm (Mettu and Plaxton, 2003) to obtain a
partition.
P ← getApproxClustPartition(1, k, R, S)
D ← computeDensities(P, AG)
return (P, D)

5 Using the summary

In this section we show how our summaries can be used (1) in partitioning prob-
lems, (2) for compression, and (3) to accurately answer queries about the original
graph.
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5.1 Partitioning

By definition, a summary with low cut-norm error (i.e, a weakly regular partition
of a graph) gives good approximations to the sum of the weights of the edges
between any pair of vertex sets. This helps devising approximation algorithms for
certain graph partitioning problems by working on the summary. For example,
Frieze and Kannan (1999) give a PTAS for MaxCut restricted to dense graphs,
by finding a small weakly regular partition, and then using brute force to find the
optimal weighted max cut of the summary, which can then be translated back
into a nearly maximum cut in the original graph. A similar technique has been
recently applied to devise sublinear algorithms for correlation clustering (Bonchi
et al, 2013).

5.2 Compression

The summary, seen as a partition of the vertices and a collection of densities,
can be used as a lossy compressed representation of the graph. It is described
by a partition of the vertices into supernodes and a collection of densities. The
partition (a function from [n] to [k]) can be stored in O(n log k) bits. The densities
are determined by the total weight of edges between each pair of sets, which
takes O(k2` logn) bits, where ` is the number of bits required to store each edge
weight. Therefore the number of bits required to describe a summary is O(n log k+
k2` logn).6

One can also compute a lossless compressed representation of the original
graph. The idea is to use the summary as a model and to encode the data, i.e.,
the original graph, given the model (see (LeFevre and Terzi, 2010)). The number
of additional of bits to encode the data for unweighted graphs is∑

i,j

(
−AG(i, j) log2A

↑
S(i, j)− (1−AG(i, j)) log2

(
1−A↑S(i, j)

))
.

5.3 Query answering

Due to the lossy nature of summary, given a summary, there exists a number of
possible worlds, i.e., possible graphs, that might have originated that summary.
Therefore, following (LeFevre and Terzi, 2010) we adopt an expected-value seman-
tics for approximate query answering: the answer to a query on the summary is
the expectation of the exact answer over all graphs that may have resulted in
that summary, considered all equally likely under the principle of indifference. In
particular, LeFevre and Terzi (2010) define an expected adjacency matrix Ā which

is slightly different from the lifted matrix A↑S we defined in Sect. 2 but can be
computed from it as follows7:

– If two vertices i and j belong to different supernodes in the summary, then
Ā(i, j) = A↑S(i, j).

6 Further space-saving can be achieved by storing only densities above a certain threshold
using adjacency lists; the superedges removed increase the reconstruction error.

7 Minor modifications are needed if self-loops are allowed.
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– If i and j belong to the same supernode S`, and i 6= j, then Ā(i, j) = A↑S ·
|S`|/(|S`| − 1).

– If i = j, then Ā(i, j) = 0.

Under the expected-value semantics, computing the answers to many impor-
tant class of queries is straightforward. For instance, the existence probability of
an edge (u, v) (or is expected weight, in case of weighted graphs) is Ā(u, v). The
weighted degree of v is

∑n
i=1 Ā(v, i). Similarly, the weighted eigenvector central-

ity can be expressed as
∑n
i=1 Ā(v, i)/2|E|, as shown in LeFevre and Terzi (2010,

Thm. 3.3).
It is worth remarking that the average error of adjacency queries is the `1-

reconstruction error, while the average error of degree queries is always bounded
by the `1-reconstruction error divided by n. Hence in these cases it is easy to prove
worst-case bounds on the average error incurred when computing the answer from
the summary.

We next show how to answer more complex queries involving the number of
triangles.

The problem of counting the number of triangles (cycles of size 3) in a graph
and more generally of computing the distribution of connected subgraphs is a
fundamental problem in graph analysis (Tsourakakis, 2008). These quantities are
useful to understand the structure of the graph, to compute additional properties,
and as a fingerprint of the graph. Using our graph summary for answering triangle
counting queries in the expected-value semantics is straightforward. Let ni be the
number of vertices in the i-th supernode and let πij be defined as follows for

1 ≤ i, j ≤ k: πij = dij if i 6= j, and πij =
dijni

ni−1 if i = j.

Lemma 7 The expected number of triangles is

E[4] =
k∑
i=1

(ni
3

)
π3
ii +

k∑
j=i+1

(
π2
ij

((
ni
2

)
njπii +

(
nj
2

)
niπjj

)
+

+
k∑

w=j+1

ninjnwπijπjwπwj

 . (4)

It can be computed in time O(k3).

Proof The thesis follows from repeated applications of the linearity of expectation.
The expected number of triangles is the sum of the expected numbers of three

groups of triangles, which differ by the distribution of their vertices across the
supernodes in the summary:

Group 1 triangles with all three vertices in the same supernode;
Group 2 triangles with two vertices in one supernode and one vertices in a dif-

ferent one;
Group 3 triangles with vertices in three different supernodes.

From linearity of expectation, we have that the expected number of triangles
in each group is the sum of the expectations of the number of triangles in each
possible choice of supernodes compatible with the definition of the group: single
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supernodes for group 1, pairs of supernodes for group 2, and triplets of supernodes
for group 3.

The expected number of triangles within each choice of supernodes is the sum
of the expectations over the possible choices of three vertices from the chosen
supernodes (according to the group definition). The number of choices of three
vertices depends on the number of vertices in each chosen supernodes and on the
group definition.

For each triplet of nodes we can model the presence of a triangle using a
Bernoulli random variable that takes value one if the triplet forms a triangle. The
expectation of this random variable is clearly the product of the quantities πij
(or πii) between the supernodes which the vertices of the corresponding triangle
belong to.

By summing all the terms we obtain (4). It is immediate to see that the com-
plexity is O(k3), which only depends on the number of supernodes in the summary.

The same approach can be used to develop formulas for the expected distri-
bution of subgraphs of any size. Care must be taken to avoid counting the same
occurrence of a subgraph multiple times due to isomorphisms. We can also use the
summary to count the expected number of triangles a given vertex belongs to.

Corollary 2 Let v be a vertex and let, without loss of generality, V1 be the su-
pernode it belongs to. The expected number of triangles that v belongs to is

π3
11

(
|V1| − 1

2

)
+

k∑
j=2

(π1j |Vj | (π11π1j(|Vi| − 1)+

+ πjjπ1j
|Vj | − 1

2
+

k∑
w=j+1

π1wπjw|Vw|)) . (5)

The triangle density of a graph is the ratio between the number of triangles in
the graph over the number of triplets of vertices, independently of their connec-
tivity. The results above allow us also to compute the expected triangle density
from the summary.

Corollary 3 Let E[4] be the expected number of triangles from (4). Then the
expected triangle density is

6E[4]

n(n− 1)(n− 2)
. (6)

6 Experimental Evaluation

In this section we report the results of our experimental evaluation which has the
following goals:

1. to characterize the structure of the summaries built by our algorithms;
2. to evaluate the quality of the summaries in terms of the reconstruction errors

and the cut-norm error and of their usefulness in answering queries and in
space saving;

3. to compare the performances of our algorithms with those of GraSS (LeFevre
and Terzi, 2010).
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Datasets and implementations We used real graphs from the SNAP repository8

and the iRefIndex protein interaction network9 (Table 2).
As we considered all the graphs unweighted and undirected, the `1-reconstruction

error is half the squared `2-reconstruction error (see (2)), hence we only report the
results for the `2-reconstruction error (divided by n for normalization) and the
cut-norm error (divided by n2).

We use two variants of the k-median/k-means clustering procedure at the core
of our methods: the constant-factor approximation algorithm by Arya et al (2004)
and the classic Lloyd’s iterative approach (Lloyd, 1982) with k-means++ initializa-
tion that guarantees an O(log k) approximation factor (Arthur and Vassilvitskii,
2007). Our implementations do not use the sketching and approximate distance
computation outlined in the proof of Thm. 3, so the only input parameter of
our implementations is k. We denote the different variants as follows: “S2A” is
the algorithm for the `2-reconstruction error using the approximation algorithm
by Arya et al (2004)10, “S2L” uses Lloyd’s algorithm for the k-median step for `2-
reconstruction error, and “SCL” does the same for the cut-norm error. There is no
“SCA” variant because the approximation algorithm would require computing the
fourth power of the adjacency matrix, which is too costly. Computing the exact
cut-norm error is very expensive so we estimate it using a sample of the graph
and the approximation algorithm by Alon and Naor (2006). Note that ε∗, i.e., the
smallest ε such that there is a weakly ε-regular k-partition of G is not an input
parameter of the algorithm. The only input parameter is k. Our implementations
do not use dimensionality reduction: we tested it and found that it brings little
to no performance improvement for the very sparse graphs that we consider. Our
algorithms are implemented11 in C++11 and the experiments are performed on a
4-core AMD Phenom II X4 955 with 16GB of RAM running GNU/Linux 3.12.9.
Each algorithm is run 5 times for each combination of parameters and input graph.

6.1 Summary characterization

We study the structure of the summaries created by our algorithms in terms of the
distribution of the sizes of the supernodes, the distributions of the internal and
cross densities, the (reconstruction or cut-norm) error of the generated summaries,
and the running time of our algorithms. We vary k, the number of supernodes in the
summary, differently for different graphs, with the objective to set it to reasonable
values. For smaller graphs, the chosen values of k are a significant fraction of the
original nodes, while for larger graphs we used relatively much smaller values. We
report the results for S2L in Table 2. The behaviors for S2A are extremely similar
and not reported. The behavior for the cut-norm error is reported in Table 3.

Supernode size In Table 2 and Table 3 we do not report the minimum size since
this was always 1 in all cases. This is interesting: in order to minimize the errors

8 http://snap.stanford.edu/data/
9 http://irefindex.org

10 For speed reasons, we modified the algorithm by Arya et al (2004) to try only a limited
number of local improvements and did not run it to completion. It could otherwise achieve
even better approximations.
11 The implementation is available from http://cs.brown.edu/~matteo/graphsumm.tar.bz2.

http://snap.stanford.edu/data/
http://irefindex.org
http://cs.brown.edu/~matteo/graphsumm.tar.bz2
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Size

Internal

Density (×102)
Cross

Density (×102)
`2-rec.

err. (×102) Time (s)

Graph k stdev max avg stdev max avg stdev avg avg stdev

Facebook 500 29.99 719 41.43 32.34 97.14 1.77 11.49 6.56 1.17 0.00
|V | = 4 039 750 19.00 556 34.77 31.86 94.72 1.65 11.42 6.18 1.85 0.00
|E| = 88 234 1000 15.84 597 28.59 31.22 94.79 1.56 11.42 5.81 2.67 0.02

1250 11.09 382 23.52 29.64 95.15 1.44 11.18 5.42 3.53 0.01
1500 8.77 206 19.72 28.02 94.18 1.37 11.07 5.01 4.48 0.01

Iref 1000 203.44 6542 7.40 20.05 96.29 0.88 8.58 3.07 8.22 0.18
|V | = 12 231 2000 118.33 5848 4.54 15.64 93.75 0.57 7.17 2.73 15.03 0.08
|V | = 281 903 3000 76.66 4568 2.79 12.13 90.9 0.41 6.18 2.41 23.27 0.09

4000 51.78 3475 1.84 9.73 85.71 0.31 5.43 2.08 33.18 0.11
5000 34.78 2485 1.17 7.64 85.71 0.23 4.79 1.78 44.11 0.10

Enron 6000 81.58 6817 15.56 26.88 87.5 0.22 4.62 0.96 115.3 0.21
|V | = 36 692 8000 56.78 5325 14.08 25.76 87.5 0.15 3.82 0.83 172.88 0.36
|E| = 183 831 10000 42.10 4041 12.58 24.52 87.5 0.1 3.27 0.72 253.1 15.66

12000 27.57 2635 11.16 23.24 88.88 0.08 2.86 0.63 305.38 20.67
14000 23.98 2398 9.77 21.77 87.5 0.06 2.54 0.54 349.31 17.25

Epinions1 7500 434.60 38015 3.27 13.13 90.00 0.3 5.45 0.81 384.35 0.69
|V | = 75 879 10000 332.45 34596 2.71 11.82 90.00 0.21 4.52 0.73 525.82 0.59
|E| = 405 740 12500 265.58 31070 2.23 10.6 88.88 0.15 3.85 0.66 675.15 1.09

15000 208.43 26026 1.90 9.74 87.50 0.11 3.35 0.60 870.80 1.04

Sign-epinions 7500 934.11 87464 3.41 13.54 92.30 0.42 6.31 0.67 683.9 9.8
|V | = 131 828 10000 781.22 79371 2.70 12.03 90.90 0.30 5.41 0.61 901.21 3.21
|E| = 711 210 12500 642.54 72588 2.25 10.92 88.88 0.22 4.67 0.57 1140.23 3.86

15000 543.04 67884 1.91 10.01 90.00 0.17 4.10 0.53 1449.68 2.91

Stanford 2000 2481.49 113572 28.05 32.57 97.95 0.08 2.73 0.48 389.57 19.10
|V | = 281 903 4000 1355.57 94216 25.90 31.94 97.61 0.05 2.29 0.44 616.23 51.23
|E| = 1 992 636 6000 1007.47 83444 24.25 31.52 97.61 0.04 1.98 0.42 970.74 9.04

8000 834.61 73622 22.56 31.09 97.61 0.03 1.84 0.40 1230.16 47.52
10000 658.67 65659 21.32 30.63 97.61 0.03 1.70 0.38 1604.85 81.47

Amazon0601 2000 7479.31 351920 37.79 28.91 90.9 0.01 0.90 0.53 1921.29 76.42
|V | = 403 394 4000 5006.09 323770 37.53 29.2 90.9 0.00 0.81 0.52 2646.85 49.12
|E| = 2 443 408 6000 3766.88 306673 36.97 29.69 90.9 0.00 0.76 0.52 3419.72 76.94

8000 3053.54 278468 36.78 29.99 90.9 0.00 0.73 0.51 4215.82 33.32

Table 2: Distributions of supernode size, internal and cross densities, normalized
`2-reconstruction error, and runtime for summaries built with S2L. The average
supernode size is n/k by definition. The minimum supernode size was always 1.
The minimum internal density was always 0. The minimum and maximum cross
densities were respectively always 0 and 1.

it may actually be convenient to create a supernode containing a single vertex.
Nevertheless there are also large supernodes containing hundreds or thousands of
vertices, which helps explain the relatively large standard deviation. As k grows,
the standard deviation shrinks faster than the average size (n/k), suggesting that
supernode sizes become more uniform. The behavior is similar for the two errors,
but we can see that the distribution is actually different, reflecting the different
requirements.

Density The minimum internal density was 0 in all our tests, as a consequence
of aforementioned fact that there are supernodes of size 1 and that the graphs
had no self-loops. On the other hand, there are supernodes whose corresponding
induced subgraphs are quite dense, almost cliques (a clique would correspond to a
value of 100 in the “max” column). The minimum and maximum cross densities
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Size

Internal

Density (×102)
Cross

Density (×102)
cut-norm

err. (×104) Time (s)

Graph k stdev max avg stdev max avg stdev avg avg stdev

Facebook

500 18.90 351 35.05 29.90 96.17 1.53 9.78 24.98 3.86 0.09
750 12.34 221 30.85 29.42 93.43 1.57 10.59 20.69 6.19 0.09
1000 9.39 203 26.20 28.72 93.50 1.51 10.78 19.70 9.24 0.14
1250 7.06 146 22.18 27.58 93.50 1.46 10.93 19.22 12.54 0.20
1500 5.87 141 18.82 26.53 93.07 1.37 10.85 18.12 16.56 0.05

Iref

1000 184.73 6995 0.12 2.11 50 0.37 5.80 8.57 107.21 3.46
2000 111.81 6026 0.07 1.64 50 0.38 5.97 8.07 254.31 4.59
3000 87.90 5807 0.07 1.66 50 0.35 5.81 6.43 380.01 70.89
4000 20.86 1230 0.06 1.52 50 0.25 4.84 5.71 545.87 104.04
5000 19.60 1863 0.05 1.47 50 0.21 4.51 4.79 581.29 177.52

Enron

6000 65.63 3912 3.54 13.27 87.50 0.22 4.63 1.49 1211.59 16.76
8000 60.22 8339 4.36 14.84 87.50 0.16 3.89 1.69 1908.63 487.16
10000 37.88 2735 5.32 16.38 87.50 0.11 3.26 1.61 2121.09 10.60
12000 30.17 2456 6.12 17.60 87.50 0.08 2.84 1.88 2572.83 10.96
14000 25.21 2631 6.77 18.48 87.50 0.07 2.53 2.16 3019.85 15.64

Epinions1

7500 234.57 29872 0.11 2.03 75 0.27 5.12 0.71 6306.92 1494.41
10000 154.25 14924 0.13 2.43 83.33 0.20 4.41 0.70 8640.02 2054.76
12500 178.53 30719 0.16 2.71 85.71 0.16 3.92 0.53 11169.40 2883.92
15000 119.30 16597 0.18 2.79 83.33 0.12 3.42 0.55 16030.62 3694.68

Sign-epinions

7500 645.35 57295 0.11 2.15 66.67 0.35 5.86 0.55 17543.27 564.95
10000 541.35 48479 0.09 1.81 75 0.26 5.02 0.51 25235.54 676.87
12500 449.69 46588 0.10 2.05 91.67 0.20 4.46 0.48 33078.94 871.03
15000 428.44 49180 0.11 2.26 92.97 0.17 4.14 0.35 41377.98 472.26

Amazon0601

2000 3983.13 217197 6.58 17.88 89.26 0.01 0.76 0.36 6466.76 1925.52
4000 2740.82 188554 6.67 17.89 90.00 0.01 0.79 0.38 6687.60 1397.96
6000 2083.37 203282 6.66 18.16 90.91 0.01 0.76 0.39 10229.73 4640.58
8000 1656.28 145817 6.58 18.08 90.91 0.01 0.73 0.47 18176.86 3035.96

Table 3: Distributions of supernode size, internal and cross densities, normalized
cut-norm reconstruction error, and runtime for summaries built with SCL. The av-
erage supernode size is n/k by definition. The minimum supernode size was always
1. The minimum internal density was always 0. The minimum and maximum cross
densities were respectively always 0 and 1.

are not reported in Tables 2 and 3 because they were respectively 0 and 1 in all
cases. While the latter fact is expected from the presence of supernodes of size 1,
the former suggests that some supernodes are effectively independent from each
other, i.e., there are no edges connecting them. The cross densities are very small
but their distribution has a large standard deviation, a fact related to the presence
of cross-densities equal to 1. Both internal and cross densities decrease as k grow.

Reconstruction errors The `2-reconstruction error in Table 2 shrinks linearly as k
grows. This was very consistent across the five runs for all cases: standard deviation
(not reported) was less than 10−4. Interestingly, for fixed k, the normalized error
becomes smaller as the size of the graph grows.

Cut-norm error Again, the cut-norm error (SCL algorithm) shrinks approximately
linearly as k grows. We attribute the slight deviation from linearity to the fact that
we are not computing the exact cut-norm error, but rather an approximation.
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S2L S2A SCL

`2-rec. err. Time (s) `2-rec. err. Time (s) Cut-norm err Time (s)

k avg (×102) avg stdev avg (×102) avg stdev avg (×102) stdev (×102) avg stdev

1000 3.07 8.22 0.18 2.89 70.18 3.33 0.08 0.01 107.21 3.46
2000 2.73 15.03 0.08 2.53 86.13 2.4 0.06 0.00 254.31 4.59
3000 2.41 23.27 0.09 2.19 102.97 3.35 0.05 0.01 380.01 70.89
4000 2.08 33.18 0.11 1.88 93.42 1.83 0.05 0.01 545.87 104.04
5000 1.78 44.11 0.1 1.59 106.75 2.04 0.04 0.01 581.29 177.52

Table 4: Errors (normalized) and runtime as function of k for Iref. Standard de-
viations for the `2-rec. errors are not reported because insignificant (smaller than
10−4 for errors of order 10−2).

Runtime The running time grows approximately linearly with k, but for larger
graphs and larger k its standard deviation across the five runs grows. By looking
at the leftmost four columns of Table 4 we can see that, as expected, S2A builds
summaries with a slightly smaller `2-reconstruction error than S2L but takes be-
tween 3 to 9 times longer. The times for SCL are much higher because squaring
the original adjacency matrix results in a much denser matrix. The high standard
deviation of the running times for SCL are also due to the approximation algorithm
involved in the computation of the cut-norm error.

Error in Query Answering

Adjacency (×102) Degree

Graph k avg stdev avg stdev
Clust.
Coeff.

Facebook

500 0.42 4.57 7.14 10.43 -0.31
750 0.37 4.32 6.22 9.15 -0.28

1000 0.33 4.05 5.38 7.96 -0.24
1250 0.28 3.79 4.79 7.27 -0.19
1500 0.24 3.49 4.01 6.31 -0.15

Iref

1000 0.09 2.15 6.23 11.25 -0.47
2000 0.07 1.92 4.53 8.18 -0.32
3000 0.05 1.68 3.27 6.1 -0.20
4000 0.04 1.46 2.39 4.5 -0.13
5000 0.03 1.26 1.68 3.38 -0.07

Enron
4000 0.01 0.78 2.57 4.95 -0.32
6000 < 0.01 0.66 1.92 3.53 -0.20
8000 < 0.01 0.57 1.49 2.65 -0.13

Table 5: Error in query answering for summaries built with S2L. For adjacency
and degree queries we report the absolute error, while for the clustering coefficient
we report the relative error.
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Error in Query Answering

Adjacency (×102) Degree

Graph k avg stdev avg stdev
Clust.
Coeff.

Facebook

500 0.54 5.18 7.81 20.46 -0.47
750 0.47 4.82 6.07 17.90 -0.40

1000 0.41 4.50 5.06 14.66 -0.34
1250 0.35 4.17 4.27 14.14 -0.28
1500 0.30 3.83 3.53 10.19 -0.23

Iref

1000 0.12 2.40 7.35 20.45 -0.90
2000 0.10 2.24 5.79 18.15 -0.77
3000 0.08 1.98 4.23 16.06 -0.57
4000 0.07 1.80 3.64 12.38 -0.50
5000 0.05 1.56 2.55 8.91 -0.34

Enron
4000 0.02 0.94 3.32 14.11 -0.57
6000 0.01 0.81 2.37 9.87 -0.38
8000 0.01 0.71 1.75 8.16 -0.26

Table 6: Error in query answering for summaries built with SCL. For adjacency
and degree queries we report the absolute error, while for the clustering coefficient
we report the relative error.

6.2 Query answering

We evaluated the performances of the summaries in answering queries about the
structure of the graph. In Tables 5 and 6 we report (1) the absolute error for
adjacency queries, corresponding to the `1-reconstruction error; (2) the absolute
degree error, and (3) the relative triangle density error (defined as (expected −
exact)/exact). Results for the very large graphs are not available because comput-
ing the query error would require running the query on the original graph, and
this takes an excessive amount of time (indeed, this is one of the motivations for
our work). We also do not report values for larger values of k because even on
the summary it would take too much time to run the queries. We remark that the
performances on answering degree (resp. triangle density) queries are equivalent to
those of answering eigenvector centrality queries (resp. triangle counting queries).
In general, as expected, a decrease in k corresponds to an often-substantial in-
crease in the query answer error. For adjacency queries, the average error (which
is exactly the `1-reconstruction error) is very small, almost 0, and indeed the er-
ror was 0 for many pairs of vertices. We found though that the maximum error
could be large in some rare case. This can happen when a vertex v is the only
one in its supernode to have an edge to a vertex u in another supernode: if one
or both supernodes are large, the cross density is very small, but the error in the
adjacency query involving v and u is large, since they are the only connected pair.
This has obviously an impact on the standard deviation that is substantially larger
than the average. For degree queries, the average error is small, when compared
to the average degree 2|E|/|V | and to the ratio between the `1-reconstruction er-
ror and n (which is an upper bound to the average degree error). The standard
deviation of the error shows that it is also quite concentrated. As for clustering
coefficients (i.e., triangle counting), the estimations obtained from the summary
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are of good quality when the ratio between the number of vertices in the graph
and the number of supernodes is not too large, but grows rapidly otherwise. This
is to be expected: the number of triangles (and therefore the clustering coefficient)
is particularly sensitive to loss of information due to summarization. Note that we
always underestimate the clustering coefficient because real-world networks have
many more triangles than random graphs.

`2-reconstr. Err.

k Alg. c (for GS) avg stdev min max Runtime (s)

10
GS

0.1 0.168 14× 10−3 0.167 0.170 495.122
0.5 0.155 0.8× 10−3 0.154 0.156 2669.961
0.75 0.153 0.7× 10−3 0.153 0.154 4401.213
1.0 0.153 0.6× 10−3 0.152 0.154 5516.915

S2A 0.152 1.6× 10−3 0.150 0.154 0.440

25
GS

0.1 0.156 0.3× 10−3 0.155 0.156 494.666
0.5 0.145 0.9× 10−3 0.143 0.146 2669.619
0.75 0.143 0.6× 10−3 0.143 0.144 4400.456
1.0 0.142 0.5× 10−3 0.142 0.143 5515.247

S2A 0.140 1.3× 10−3 0.138 0.141 0.742

50
GS

0.1 0.146 0.5× 10−3 0.145 0.147 495.518
0.5 0.136 0.8× 10−3 0.135 0.137 2671.848
0.75 0.133 0.6× 10−3 0.133 0.134 4407.631
1.0 0.133 0.4× 10−3 0.132 0.133 5527.319

S2A 0.131 0.5× 10−3 0.130 0.131 0.695

100
GS

0.1 0.130 0.4× 10−3 0.130 0.131 495.074
0.5 0.120 0.8× 10−3 0.119 0.121 2669.013
0.75 0.117 0.6× 10−3 0.117 0.118 4396.178
1.0 0.116 0.4× 10−3 0.116 0.117 5508.125

S2A 0.115 0.6× 10−3 0.114 0.115 0.708

250
GS

0.1 0.081 0.8× 10−3 0.080 0.082 462.085
0.5 0.072 0.4× 10−3 0.072 0.073 2517.515
0.75 0.070 0.5× 10−3 0.070 0.071 4192.601
1.0 0.069 0.5× 10−3 0.069 0.070 5263.651

S2A 0.065 0.8× 10−3 0.064 0.067 0.552

Table 7: Reconstruction error and runtime comparison between S2A and GS on
a random sample (n = 500) of ego-gplus. The reported averages and standard
deviations are computed over five runs.

6.3 Space usage

We evaluate the number of bits needed to store the summary S versus the number
of bits needed to store the original graph G. We compute the former as

bS = |V | log2 k + r(2 log2 k + log2 |E|),

where r is the number of non-zero entries on or under the diagonal of the k × k
density matrix AS (see also Sec. 5.2). The number of bits to store the graph is

bG = 2|E| log2 |V |
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We report the results in Table 8 for both S2L and SCL. As expected, the number
of bits increases with k, and, for large values of k, the size needed to store the
summary may be larger than the one needed to store the original graph, as there
is additional complexity required to store the partition function and the summary
densities. We should remark that we developed the summary originally for query
answering, not for compression, which is a different area of research (see also
Sect. 1.1).

S2L SCL

Graph
Original

size k
Summary

size
Compression

ratio
Summary

size
Compression

ratio

Facebook 2114049

500 366349 0.173 440476 0.208
750 642310 0.303 720371 0.340

1000 926396 0.438 1040859 0.492
1250 1250290 0.591 1387885 0.656
1500 1533352 0.725 1731776 0.819

Iref 2494923

1000 1089080 0.436 517619 0.207
2000 2051738 0.822 1144834 0.458
3000 2679831 1.074 2321064 0.930
4000 3088472 1.237 2697958 1.081
5000 3366874 1.349 3120196 1.250

Amazon0601 91001457

2000 4809483 0.052 5315556 0.058
4000 5794127 0.063 6728684 0.073
6000 6747965 0.074 7922581 0.087
8000 7803563 0.085 8361073 0.091

Table 8: Comparison of the number of bits needed to store original graph and the
summary. For the summary, the reported numbers are averages over five runs. We
do not report standard deviations are they are negligible.

6.4 Comparison with GraSS

We compared the runtime and the summary quality of S2A with those of the
GraSS k-GS-SamplePairs algorithm (LeFevre and Terzi, 2010) (which we refer to
as “GS”). An implementation of GS from the original authors was not available,
therefore we implemented it in C++11 and optimized it as much as we could
in order to be able to perform a fair comparison. GS was originally presented as
a method to build summaries by heuristically minimizing the `1-reconstruction
error using the expected adjacency matrix, rather than the lifted matrix from the
summary. Given the close similarity between the two, we adapted GS to use the
lifted matrix and extended it to minimize the `2-reconstruction error. We did not
pursue the adaptation of GS to the cut-norm error due to fact that GS would
perform multiple computations of the cut-norm error per step, incurring in an
exceedingly high cost. In order to keep the running time of GS within reasonable
limits, we used sampled-down versions of the graphs obtained with a “forest-fire”
sampling approach. In Table 7 we report the results for a sample of 500 vertices
and 3969 edges of the ego-gplus networks. Results for samples of other graphs
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were similar in nature. GS takes a parameter c to quantify the number of sampled
pair candidates for merging per step. We used c ∈ {0.10, 0.5, 1.0}. We did not
use higher values for c due to the excessive running time of GS for high values of
this parameter. It is possible to appreciate that S2A is several orders of magnitude
faster than GS (which runs in O(n4 · c)), and its error is, with a single exception,
always smaller than GS’s error. In fact, due to the internal workings of GS, its
running time is roughly independent of k unless k is close to n. In conclusion, our
algorithm not only gives guarantees on the approximation of the optimum solution
but it also builds summaries with smaller reconstruction error, much faster.

In Table 9 we present results comparing the performances of S2A and of GS in
answering queries. We can see that S2A is better for adjacency queries, which is to
be expected given that the `2-reconstruction error is, in some sense, a proxy for the
average adjacency query error, while GS performs better on degree and clustering
coefficient queries. An hypothesis for this behavior is that the summaries built
by GS may have a different structure than those built by S2A, exposing different
properties. It is important to note though that, in all cases, the standard deviations
for these errors are not small, in relative terms, hence the relative performances
of the two algorithms are effectively comparable, as already pointed out by the
similar `2-reconstruction errors.

Error in Query Answering

Adjacency (×102) Degree Clust. Coeff.

k Alg. c (for GS) avg stdev avg stdev avg stdev

10
GS

0.1 2.83 11.55 10.22 21.85 -0.88 0.02
0.5 2.41 10.72 6.52 11.05 -0.68 0.01
1.0 2.34 10.55 6.66 10.73 -0.64 0.05

S2A 2.31 10.49 7.96 11.86 -0.67 0.01

25
GS

0.1 2.41 10.71 6.28 10.27 -0.73 0.02
0.5 2.10 10.01 4.61 7.15 -0.61 0.04
1.0 2.02 9.83 4.57 7.01 -0.60 0.01

S2A 1.96 9.70 5.57 8.04 -0.59 0.04

50
GS

0.1 2.13 10.09 4.40 6.39 -0.63 0.03
0.5 1.83 9.38 3.60 5.22 -0.52 0.01
1.0 1.75 9.18 3.33 5.00 -0.49 0.03

S2A 1.70 9.05 4.14 6.04 -0.52 0.02

100
GS

0.1 1.69 9.01 2.99 4.24 -0.47 0.01
0.5 1.47 8.34 2.45 3.48 -0.35 0.01
1.0 1.33 8.04 2.36 3.37 -0.33 0.02

S2A 1.31 7.97 2.89 4.06 -0.42 0.02

250
GS

0.1 0.66 5.68 1.06 1.72 -0.11 0.03
0.5 0.52 5.09 0.79 1.30 -0.07 0.01
1.0 0.48 4.86 0.79 1.29 -0.07 0.01

S2A 0.43 4.59 0.92 1.55 -0.11 0.01

Table 9: Query answering error comparison between S2A and GS on a random
sample (n = 500) of ego-gplus. For adjacency and degree queries we report the
absolute error, while for the clustering coefficient we report the relative error. The
reported averages and standard deviations are computed over five runs.



30 Matteo Riondato et al.

7 Conclusions

This work provides the first approximation algorithms to build quasi-optimal sum-
maries with guaranteed quality according to various error measures. The algo-
rithms exploit a novel connection between graph summarization and the k-median
and k-means problems arising from properties of the chosen error measures and
of smoothing projections. One of the measures introduced (the cut-norm error)
is particularly interesting and relates high-quality summaries to weakly-regular
partitions, an concept connected to the Szemerédi regularity lemma. We believe
that this connection with theoretical results can be a powerful addition to the
algorithm designer toolkit for other problems in graph analysis and mining.

In addition to offering approximation guarantees, our algorithms perform ex-
tremely well in practice on real graphs. They outperform previous contributions
offering no guarantees in both reconstruction error and running time. We also stud-
ied the summaries created by our algorithms including their structural properties
(e.g., supernode densities and sizes) and their usefulness in approximate query an-
swering. Among the interesting findings of the experimental evaluation, we found
that there are always supernodes of size one. This fact may seem counterintuitive
at first, but can be easily explained in terms of “outlier” nodes in the network.
Our algorithms permit to identify such nodes as they may be of particular interest,
rather than considering them just noise. Additionally, the summaries give good
answers to common graph queries (e.g., adjacency, degree), with small error and
much faster than running on the original graph.

Among the possible directions for future work, we believe it would be par-
ticularly interesting to develop streaming-based algorithms that can compute the
summary from a streaming of edges. Given the dynamic nature of todays graphs,
we also envision a semi-dynamic algorithm that, given a graph summary and a
batch of edge insertions and deletions, efficiently updates the summary in an op-
timal way.
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