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Abstract
The availability of massive datasets has highlighted the need
of computationally efficient and statistically-sound methods
to extracts patterns while providing rigorous guarantees on
the quality of the results, in particular with respect to false
discoveries. In this tutorial we survey recent methods that
properly combine computational and statistical considera-
tions to efficiently mine statistically reliable patterns from
large datasets. We start by introducing the fundamental
concepts in statistical hypothesis testing, including condi-
tional and unconditional tests, which may not be familiar
to everyone in the data mining community. We then ex-
plain how the computational and statistical challenges in
pattern mining have been tackled in different ways. Finally,
we describe the application of these methods in areas such
as market basket analysis, subgraph mining, social networks
analysis, and cancer genomics.

1 Tutorial Outline

We start with an introduction to the fundamental
concepts behind statistical hypothesis testing, and the
key questions that will be answered in the rest of the
tutorial. In particular, we first introduce the framework
of testing a single hypothesis (defining, e.g., what a
null hypothesis is) and example applications where
testing hypothesis is crucial, such as in biomedical
research and in the study of social networks. We
then discuss fundamental tests such as Fisher’s exact
test [6] and the related χ2 and Barnard’s test [1].
The final part of the introduction covers issues arising
from testing multiple hypotheses on the same data and
how to address these issues: we outline how and why
the probability of discovering false positives grows in
such scenarios, and how to control for this growth by
bounding different metrics, such as the Family-Wise
Error Rate (FWER) [4, 12] and the False Discovery
Rate (FDR) [2, 3].

In the central part, we focus on mining statistically-
sound patterns. We first define the problem and high-
light its computational and statistical challenges aris-
ing from the combinatorial explosion of the number
of hypotheses being tested and from the sheer size of
data [10, 22, 28]. We then tackle these challenges one
by one. We discuss how to make the process of finding
statistically significant patterns efficient from a compu-
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tational point of view [8, 16, 18, 23]. Specifically, we
discuss efficient permutation testing [8, 16], the ground-
breaking LAMP method [23] which allows to apply
Tarone [22]’s method to combinatorial patterns, Top-
KWY [18], which efficiently extracts the k most statis-
tically significant patterns while preserving guarantees
on the FWER, and SPuManTE [17], which enables sig-
nificant pattern mining with unconditional tests. The
statistical efficiency is covered next: the works presented
here [14, 20, 26, 27] introduce different methods to in-
crease the statistical power of methods to extract signif-
icant patterns while controlling the FWER, and to deal
with different inferential aspects of pattern mining. This
part is the core of our tutorial: statistics and data min-
ing come together to obtain fast and statistically-sound
methods for pattern mining.

We then overview other interestingness measures for
patterns which, although not based on hypothesis test-
ing, are grounded in statistics and therefore relevant to
this tutorial, such as emerging [15] and discriminative
patterns [11], significant association rules [9]. All these
patterns are interesting on their own, and their presen-
tation allows us to perform a comparison of different
approaches. A discussion of applications of the pre-
sented methods, from mining of significant subgraphs
and motifs from large graphs [21], to biomedicine [24]
and computational biology [7], will be provided.

In the final third part, we focus on more advanced
material. Specifically, we show how to remove the
assumptions on the data generating process [5], which
have classically been used to make the problem more
tractable. We also discuss how to weight hypotheses in
a data-dependent way, with the goal of increasing the
statistical power [13]. The materials covered here are
recent developments that should interest the attending
researchers, as will the potential future directions that
complete the tutorial.

The outline of the tutorial is the following.

1. Introduction and Theoretical Foundations

(a) Testing a single hypothesis: setting, basic concepts,
and applications [25, Ch. 10]

(b) Fundamental tests: Fisher’s test [6], χ2 test [25,
Sect. 10.3], Barnard’s test [1]

(c) Testing multiple hypotheses: Family-Wise Error
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Rate [4] and False Discovery Rate [2]
(d) Bonferroni-Holm and Benjamini-Yekutieli correc-

tions [3, 12]

2. Mining Statistically-Sound Patterns

(a) Computational and statistical challenges in pattern
mining [10, 22, 28]

(b) Computational aspects: LAMP [23], permutation
testing [8, 16], TopKWY [18], SPuManTE [17]

(c) Statistical aspects: hold-out approach and layered
critical values [26, 27], a threshold for significant
pattern mining [14], true frequent itemsets [20]

(d) Other measures: emerging patterns [15], discrimi-
native patterns [11], significant association rules [9]

(e) Applications: subgraph mining [21], cancer ge-
nomics [24], computational biology [7], and survival
analysis [19]

3. Recent developments and advanced topics

(a) Removing assumptions [5]
(b) Data-dependent hypothesis weighting [13]
(c) Conclusions, future directions, and discussion
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