Hypothesis Testing and Statistically-sound Pattern Mining
 Tutorial - KDD 2019

Leonardo Pellegrina ${ }^{1}$ Matteo Riondato ${ }^{2}$ Fabio Vandin ${ }^{1}$
${ }^{1}$ Dept. of Information Engineering, University of Padova (IT)
${ }^{2}$ Dept. of Computer Science, Amherst College (USA)

ANCHORAGE, ALASKA
AUGUST 4-8, 2019
Dena'ina Convention Center and William Egan Convention Center

Slides available from http://rionda.to/statdmtut

Outline

1. Introduction and Theoretical Foundations 1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

Introduction

> Data mining and (inferential) statistics have traditionally two different point of views

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

Similar questions but different flavours!

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"
- Statistics: "What is the probability that a post from C_{1} is related to T ? What is the probability that a post from C_{2} is related to T ?"

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"
- Statistics: "What is the probability that a post from C_{1} is related to T ? What is the probability that a post from C_{2} is related to T ?"

Note: the two are clearly related, but different!

Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees on the underlying generative process?

Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees on the underlying generative process?

We use the statistical hypothesis testing framework

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer \Rightarrow a pattern \mathcal{S}

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer \Rightarrow a pattern \mathcal{S}

EXAMPLE

- $\mathcal{D}=$ for 1000 diseased individuals (cases), whether $\operatorname{drug} \mathcal{S}$ had an effect (YES/NO); for 1000 healthy individuals (controls), whether $\operatorname{drug} \mathcal{S}$ had an effect (YES/NO).

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer \Rightarrow a pattern \mathcal{S}

EXAMPLE

- $\mathcal{D}=$ for 1000 diseased individuals (cases), whether drug \mathcal{S} had an effect (YES/NO); for 1000 healthy individuals (contro/s), whether drug \mathcal{S} had an effect (YES/NO).
- does \mathcal{S} have the same effect on diseased individuals (cases) and on healthy individuals (controls)?

Example: market basket analysis
Dataset \mathcal{D} : transactions = set of items, label (student/professor) Pattern \mathcal{S} : subset of items (orange, tomato, broccoli)

Example: market basket analysis

Dataset \mathcal{D} : transactions = set of items, label (student/professor) Pattern \mathcal{S} : subset of items (orange, tomato, broccoli)

Question: is \mathcal{S} associated with one of the two labels?

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

The goal is to use the data to either reject H_{0} (" \mathcal{S} is interesting!") or not (" \mathcal{S} is not interesting).

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

The goal is to use the data to either reject H_{0} (" \mathcal{S} is interesting!") or not (" \mathcal{S} is not interesting).

This is decided based on a test statistic, that is, a value $x_{S}=f_{S}(\mathcal{D})$ that describes \mathcal{S} in \mathcal{D}

Statistical Hypothesis Testing: p-value
Let $x_{S}=f(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.

Statistical Hypothesis Testing: p-value

Let $x_{S}=f(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)

Statistical Hypothesis Testing: p-value
Let $x_{S}=f(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$

Statistical Hypothesis Testing: p-value

Let $x_{S}=f(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$
" X_{S} more extreme than x_{S} ": depends on the test, may be $X_{S} \geqslant x_{S}$ or $X_{S} \leqslant x_{S}$ or something else...

Statistical Hypothesis Testing: p-value

Let $x_{S}=f(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$
" X_{S} more extreme than x_{S} ": depends on the test, may be $X_{S} \geqslant x_{S}$ or $X_{S} \leqslant x_{S}$ or something else...

Rejection rule:

Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Type I error
(false positive)

Type II error
(false negative)

Statistical Hypothesis Testing: Error Guarantees

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Error Guarantees

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Theorem
Using the rejection rule, the probability of a type I error is $\leqslant \alpha$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$
Note: for a test with power β, we have $\operatorname{Pr}[$ type II error $]=1-\beta$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$
Note: for a test with power β, we have $\operatorname{Pr}[$ type II error $]=1-\beta$
(Power is not everything: if it was, it would be enough to always flag all patterns as significant. . .)

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Null hypothesis H_{0} : the events " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ " are independent.

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Null hypothesis H_{0} : the events " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ " are independent.

Alternative hypothesis: there is a dependency between " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ "

Example: market basket analysis

$$
\mathcal{S}=\{\text { orange, tomato, broccoli }\}
$$

Example: market basket analysis
$\mathcal{S}=\{$ orange, tomato, broccoli $\}$

H_{0} : presence of \mathcal{S} is independent of (not associated with) label "professor"

Example: Testing for Independence (2)

Useful representation of the data: contingency table

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}
- $\sigma(\mathcal{S})=\sigma_{0}(\mathcal{S})+\sigma_{1}(\mathcal{S})=$ support of \mathcal{S} in \mathcal{D}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}
- $\sigma(\mathcal{S})=\sigma_{0}(\mathcal{S})+\sigma_{1}(\mathcal{S})=$ support of \mathcal{S} in \mathcal{D}
- $n_{i}=$ number transactions with label c_{i}

Example: Testing for Independence (3)

Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$

Example: market basket analysis

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Value of test statistic $=\sigma_{1}(\mathcal{S})$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Value of test statistic $=\sigma_{1}(\mathcal{S})=3$

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$
p-value: how do we compute it?

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$
p-value: how do we compute it?
Most common method: Fisher's exact test

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.
\Rightarrow under the null hypothesis (independence), the support of S in class c_{1} follows an hypergeometric distribution of parameters n, n_{1}, and $\sigma_{\mathcal{S}}$

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.
\Rightarrow under the null hypothesis (independence), the support of S in class c_{1} follows an hypergeometric distribution of parameters n, n_{1}, and $\sigma_{\mathcal{S}}$
\Rightarrow the p-value is easily computable!

Fisher's exact test(2)
Let $X_{\mathcal{S}}$ be the r.v. describing the support of \mathcal{S} in class c_{1} when the null hypothesis holds

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's exact test(2)
Let $X_{\mathcal{S}}$ be the r.v. describing the support of \mathcal{S} in class c_{1} when the null hypothesis holds

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\operatorname{Pr}\left(X_{\mathcal{S}}=k\right)=\frac{\binom{n_{1}}{k}\binom{n_{0}}{\sigma(\mathcal{S})-k}}{\binom{n}{\sigma(\mathcal{S})}}
$$

Fisher's exact test(2)
Let $X_{\mathcal{S}}$ be the r.v. describing the support of \mathcal{S} in class c_{1} when the null hypothesis holds

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\operatorname{Pr}\left(X_{\mathcal{S}}=k\right)=\frac{\binom{n_{1}}{k}\binom{n_{0}}{\sigma(\mathcal{S})-k}}{\binom{n}{\sigma(\mathcal{S})}}
$$

p-value for $\mathcal{S}: p_{\mathcal{S}}=\sum_{k \geqslant \sigma_{1}(\mathcal{S})} \operatorname{Pr}\left(X_{\mathcal{S}}=k\right)$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,3$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,3$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=0.228$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,3$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=0.228$
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 3\right)=0.243$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,3$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=0.228$
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 3\right)=0.243$
If $\alpha=0.05 \Rightarrow \mathcal{S}$ is not associated with label "professor"

χ^{2} test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \subseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." $\underbrace{\text { 圈 }}$
χ^{2} test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." G圈
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." G圈
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." 因
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}
- $X_{\mathcal{S}, 1}=$ r.v. describing the support \mathcal{S} in class c_{1}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..."
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}
- $X_{\mathcal{S}, 1}=$ r.v. describing the support \mathcal{S} in class c_{1}
- $X_{\overline{\mathcal{S}}, 0}=$ r.v. describing num. transactions without \mathcal{S} in class c_{0}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..."
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}
- $X_{\mathcal{S}, 1}=$ r.v. describing the support \mathcal{S} in class c_{1}
- $X_{\overline{\mathcal{S}}, 0}=$ r.v. describing num. transactions without \mathcal{S} in class c_{0}
- $X_{\overline{\mathcal{S}}, 1}=$ r.v. describing num. transactions without \mathcal{S} in class c_{1}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m．
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col．m．	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days：＂Fisher＇s exact test is computationally expensive．．．＂$⿴ 囗 十$
Random variables（r．v．）describing outcome under H_{0}（ H_{0} is true）
－$X_{\mathcal{S}, 0}=$ r．v．describing the support of \mathcal{S} in class c_{0}
－$X_{\mathcal{S}, 1}=$ r．v．describing the support \mathcal{S} in class c_{1}
－$X_{\overline{\mathcal{S}}, 0}=$ r．v．describing num．transactions without \mathcal{S} in class c_{0}
－$X_{\overline{\mathcal{S}}, 1}=$ r．v．describing num．transactions without \mathcal{S} in class c_{1}
Test statistic：$X=\sum_{i \in\{\mathcal{S}, \overline{\mathcal{S}}\}, j \in\{0,1\}}\left(X_{i, j}-\mathbb{E}\left[X_{i, j}\right]\right)^{2} / \mathbb{E}\left[X_{i, j}\right]$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m．
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col．m．	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days：＂Fisher＇s exact test is computationally expensive．．．＂$⿴ 囗 十$
Random variables（r．v．）describing outcome under H_{0}（ H_{0} is true）
－$X_{\mathcal{S}, 0}=$ r．v．describing the support of \mathcal{S} in class c_{0}
－$X_{\mathcal{S}, 1}=$ r．v．describing the support \mathcal{S} in class c_{1}
－$X_{\overline{\mathcal{S}}, 0}=$ r．v．describing num．transactions without \mathcal{S} in class c_{0}
－$X_{\overline{\mathcal{S}}, 1}=$ r．v．describing num．transactions without \mathcal{S} in class c_{1} Test statistic：$X=\sum_{i \in\{\mathcal{S}, \overline{\mathcal{S}}\}, j \in\{0,1\}}\left(X_{i, j}-\mathbb{E}\left[X_{i, j}\right]\right)^{2} / \mathbb{E}\left[X_{i, j}\right]$
Note： $\mathbb{E}\left[X_{i, j}\right]$ are easily computable

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities for the χ^{2} distribution

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities for the χ^{2} distribution

Note: the χ^{2} test is the asymptotic version of Fisher's exact test.

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2

$$
p \text {-value }=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 2\right)=0.16
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 2\right)=0.16$
If $\alpha=0.05 \Rightarrow \mathcal{S}$ is not associated with label "professor"

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0}$
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}$
Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0}$
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}$
Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$
π is nuisance parameter, in the sense that we are not interested in its value, but its value defines the distribution of our observations

Bernard's exact test(2)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$

Bernard's exact test(2)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$
How do we compute the p-value?

Bernard's exact test(3)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assuming π is known, the probability depends only on

- $X=$ r.v. describing the support of \mathcal{S}
- $Y=$ r.v. describing the support \mathcal{S} in class c_{1}

Bernard's exact test(3)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assuming π is known, the probability depends only on

- $X=$ r.v. describing the support of \mathcal{S}
- $Y=$ r.v. describing the support \mathcal{S} in class c_{1}

Let x the observed value of X and y the observed value of Y

$$
P(x, y \mid \pi)=\binom{n_{0}}{x-y}\binom{n_{1}}{y}(\pi)^{x}(1-\pi)^{n-x)}
$$

Bernard's exact test(3)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assuming π is known, the probability depends only on

- $X=$ r.v. describing the support of \mathcal{S}
- $Y=$ r.v. describing the support \mathcal{S} in class c_{1}

Let x the observed value of X and y the observed value of Y

$$
P(x, y \mid \pi)=\binom{n_{0}}{x-y}\binom{n_{1}}{y}(\pi)^{x}(1-\pi)^{n-x)}
$$

Test statistic: probability of the contingency table.

Bernard's exact test(4)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let x the observed value of X and y the observed value of Y

$$
\operatorname{Pr}(x, y \mid \pi)=\binom{n_{0}}{x-y}\binom{n_{1}}{y}(\pi)^{x}(1-\pi)^{n-x)}
$$

Bernard's exact test(4)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let x the observed value of X and y the observed value of Y

$$
\operatorname{Pr}(x, y \mid \pi)=\binom{n_{0}}{x-y}\binom{n_{1}}{y}(\pi)^{x}(1-\pi)^{n-x)}
$$

Let $T(x, y)=$ set of more extreme tables for a given π

$$
T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(x, y \mid \pi)\right\}
$$

Bernard's exact test(4)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let x the observed value of X and y the observed value of Y

$$
\operatorname{Pr}(x, y \mid \pi)=\binom{n_{0}}{x-y}\binom{n_{1}}{y}(\pi)^{x}(1-\pi)^{n-x)}
$$

Let $T(x, y)=$ set of more extreme tables for a given π

$$
T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(x, y \mid \pi)\right\}
$$

Then p-value: $p=\max _{\tau \in(0,1)}$

$$
\sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)
$$

Barnard's exact test(5)

p-value: $p=\max _{\pi \in(0,1)} \sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)$

Barnard's exact test(5)

p-value: $p=\max _{\pi \in(0,1)}$
$\sum_{\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)}$

Barnard's exact test(5)

p-value: $p=\max _{\pi \in(0,1)}$
$\sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)$

Computing the p-value is computationally expensive!

Barnard's exact test(5)

p-value: $p=\max _{\pi \in(0,1)}$

$$
\sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)
$$

Computing the p-value is computationally expensive!

- consider a grid of value for π
- enumerate all tables in $T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$$
\operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4}
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$$
\begin{aligned}
& \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4} \\
& T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\}
\end{aligned}
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$$
\begin{aligned}
& \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4} \\
& T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\}
\end{aligned}
$$

p-value: max

$$
\pi \in(0,1) \quad(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$$
\begin{aligned}
& \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4} \\
& T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\}
\end{aligned}
$$

p-value: max

$$
\pi \in(0,1) \quad(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)
$$

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction.

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction. What about Fisher's exact test?

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction.

What about Fisher's exact test?

Fixing the frequency $\sigma(S)$ of $\mathcal{S} \approx$ fixing the probability that \mathcal{S} appears in a transaction

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?
Depends on how the data is collected!

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?
Depends on how the data is collected!
In practice: everybody uses Fisher's text (computational reasons?)

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$
KDD scenario: we consider multiple hypotheses given by our dataset \mathcal{D}

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$
KDD scenario: we consider multiple hypotheses given by our dataset \mathcal{D}

What happens if we use the rejection rule above?

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Multiple hypothesis testing
Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.

Multiple hypothesis testing
Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.

Multiple hypothesis testing
Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.
Typical values of $\alpha: 0.01,0.05$.

Multiple hypothesis testing
Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.
Typical values of $\alpha: 0.01,0.05$.
Value of m ?

Multiple hypothesis testing

Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.
Typical values of $\alpha: 0.01,0.05$.
Value of m ? If you are looking at itemsets from a universe \mathcal{I} of items: $m=2^{\mathcal{I}}-1$

Multiple hypothesis testing

Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.
Typical values of $\alpha: 0.01,0.05$.
Value of m ? If you are looking at itemsets from a universe \mathcal{I} of items: $m=2^{\mathcal{I}}-1$
$\Rightarrow m \times \alpha$ is extremely high!

Multiple hypothesis testing

Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
Proposition
$\mathbb{E}[$ num. false discoveries $]=m \times \alpha$.
Typical values of $\alpha: 0.01,0.05$.
Value of m ? If you are looking at itemsets from a universe \mathcal{I} of items: $m=2^{\mathcal{I}}-1$
$\Rightarrow m \times \alpha$ is extremely high!
Need to consider the fact that we are testing multiple hypotheses!

Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false discoveries.

Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false discoveries.
$V=$ number of false discoveries.

Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false discoveries.
$V=$ number of false discoveries.
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.

Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false discoveries.
$V=$ number of false discoveries.
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Two procedures with guarantees on the FWER

- Bonferroni correction
- Bonferroni-Holm procedure

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ iff $p \leqslant \frac{\alpha}{m} \Rightarrow \mathcal{S}$ is significant!

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ iff $p \leqslant \frac{\alpha}{m} \Rightarrow \mathcal{S}$ is significant!

Intuition

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ iff $p \leqslant \frac{\alpha}{m} \Rightarrow \mathcal{S}$ is significant!

Intuition

- for each $\mathcal{S}, \operatorname{Pr}[\mathcal{S}$ is a false discovery $] \leqslant \frac{\alpha}{m}$

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ iff $p \leqslant \frac{\alpha}{m} \Rightarrow \mathcal{S}$ is significant!

Intuition

- for each $\mathcal{S}, \operatorname{Pr}[\mathcal{S}$ is a false discovery $] \leqslant \frac{\alpha}{m}$
- union bound on m events: $\operatorname{Pr}[>0$ false discoveries $]$

Bonferroni correction

Let \mathcal{H} be the set of hypotheses (patterns) we want to test, and $m=|\mathcal{H}|$.

Given a pattern $S \in \mathcal{H}$, let $H_{S, 0}$ be the corresponding null hypothesis.

Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ iff $p \leqslant \frac{\alpha}{m} \Rightarrow \mathcal{S}$ is significant!

Intuition

- for each $\mathcal{S}, \operatorname{Pr}[\mathcal{S}$ is a false discovery $] \leqslant \frac{\alpha}{m}$
- union bound on m events: $\operatorname{Pr}[>0$ false discoveries $]$ $\leqslant \sum_{\mathcal{S} \in \mathcal{H}} \operatorname{Pr}[S$ is false discovery $] \leqslant|\mathcal{H}| \frac{\alpha}{m} \leqslant \alpha$

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the minimum value such that $p_{k}>\frac{\alpha}{m+1-k}$

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the minimum value such that $p_{k}>\frac{\alpha}{m+1-k}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k-1}$

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the minimum value such that $p_{k}>\frac{\alpha}{m+1-k}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k-1}$
More powerful than Bonferroni correction: p_{i} compared with
$\frac{\alpha}{m+1-i}$ vs $\frac{\alpha}{m}$.

Bonferroni-Holm procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the minimum value such that $p_{k}>\frac{\alpha}{m+1-k}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k-1}$
More powerful than Bonferroni correction: p_{i} compared with $\frac{\alpha}{m+1-i}$ vs $\frac{\alpha}{m}$.

However: both require very small p-values to flag patterns as significant when m is large.

False Discovery Rate

Let V be the number of false discoveries.

False Discovery Rate

Let V be the number of false discoveries.
The requirement on FWER can be too strict!

False Discovery Rate

Let V be the number of false discoveries.
The requirement on FWER can be too strict!
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.

False Discovery Rate

Let V be the number of false discoveries.
The requirement on FWER can be too strict!
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate

Let V be the number of false discoveries.
The requirement on FWER can be too strict!
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
Relaxed requirement: control the False Discovery Rate

False Discovery Rate

Let V be the number of false discoveries.
The requirement on FWER can be too strict!
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
Relaxed requirement: control the False Discovery Rate
False Discovery Rate (FDR): $\mathbb{E}[V / R]$ (assuming $V / R=0$ when $R=0$).

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m}$

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k}$

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k}$
Note: more powerful than Bonferroni and Bonferroni-Holm

Benjamini-Hochberg procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k}$
Note: more powerful than Bonferroni and Bonferroni-Holm
Assumption: hypotheses are independent.

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m \sum_{i=1}^{m}(1 / i)}$

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m \sum_{i=1}^{m i}(1 / i)}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k}$

Benjamini-Yekutieli procedure

Let \mathcal{H} the set of hypotheses (patterns) to be tested, and $m=|\mathcal{H}|$.
Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{m}$ be the sorted p-values
2. let k be the maximum value such that $p_{k} \leqslant \frac{\alpha k}{m \sum_{i=1}^{m}(1 / i)}$
3. rejection rule: reject the hypotheses (patterns) associated with $p_{1}, p_{2}, \ldots, p_{k}$
Note: does not require independence of hypotheses.

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! ©

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! ©
- "let me select some hypotheses first, and then do the testing..."

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! ©
- "let me select some hypotheses first, and then do the testing..."
- find pattern \mathcal{S} with highest value $\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})$:

$$
\sigma_{1}(\mathcal{S})=10, \sigma_{0}(\mathcal{S})=0
$$

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! ©
- "let me select some hypotheses first, and then do the testing..."
- find pattern \mathcal{S} with highest value $\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})$:

$$
\sigma_{1}(\mathcal{S})=10, \sigma_{0}(\mathcal{S})=0
$$

- "I am going to test only \mathcal{S} !"

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! G
- "let me select some hypotheses first, and then do the testing..."
- find pattern \mathcal{S} with highest value $\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})$:

$$
\sigma_{1}(\mathcal{S})=10, \sigma_{0}(\mathcal{S})=0
$$

- "I am going to test only \mathcal{S} !"
- Fisher's exact test p-value $=0.0001$

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! G
- "let me select some hypotheses first, and then do the testing..."
- find pattern \mathcal{S} with highest value $\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})$:

$$
\sigma_{1}(\mathcal{S})=10, \sigma_{0}(\mathcal{S})=0
$$

- "I am going to test only \mathcal{S} !"
- Fisher's exact test p-value $=0.0001$
- " \mathcal{S} is very significant!!!"

Choosing hypotheses before testing?

Dataset \mathcal{D} :

- 10 transactions with label $c_{1}, 10$ transactions with label c_{0}
- items \mathcal{I} with $|\mathcal{I}|=13$

We are interested only in patterns of size 6 .
Number of hypotheses $m=\binom{15}{6}=6435$

- " m is large, will never find significant results"! G
- "let me select some hypotheses first, and then do the testing..."
- find pattern \mathcal{S} with highest value $\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})$:

$$
\sigma_{1}(\mathcal{S})=10, \sigma_{0}(\mathcal{S})=0
$$

- "I am going to test only \mathcal{S} !"
- Fisher's exact test p-value $=0.0001$
- " \mathcal{S} is very significant!!!" ${ }^{-;}$
" \mathcal{S} is very significant!!!" ${ }^{-}$
" \mathcal{S} is very significant!!!" ${ }^{-)}$
BUT IT IS NOT!
" \mathcal{S} is very significant!!!" ${ }^{-)}$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}
" \mathcal{S} is very significant!!!" $;$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}

- consider one of its 10 occurrences
" \mathcal{S} is very significant!!!" $;$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}

- consider one of its 10 occurrences
- place it in a transaction with label c_{0} with probability $1 / 2$, and in a transaction with label c_{1} with probability $1 / 2$ otherwise
" \mathcal{S} is very significant!!!" ${ }^{-)}$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}

- consider one of its 10 occurrences
- place it in a transaction with label c_{0} with probability $1 / 2$, and in a transaction with label c_{1} with probability $1 / 2$ otherwise
- \mathcal{S} is not associated with class labels!
" \mathcal{S} is very significant!!!" ${ }^{-)}$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}

- consider one of its 10 occurrences
- place it in a transaction with label c_{0} with probability $1 / 2$, and in a transaction with label c_{1} with probability $1 / 2$ otherwise
- \mathcal{S} is not associated with class labels!

For a given \mathcal{S}, the probability $\sigma_{1}(\mathcal{S})=10$ and $\sigma_{0}(\mathcal{S})=0$ is
$(1 / 2)^{10}=1 / 1024$
" \mathcal{S} is very significant!!!" ${ }^{\text {; }}$

BUT IT IS NOT!

Assume that \mathcal{D} is generate as follows: for each pattern \mathcal{S}

- consider one of its 10 occurrences
- place it in a transaction with label c_{0} with probability $1 / 2$, and in a transaction with label c_{1} with probability $1 / 2$ otherwise
- \mathcal{S} is not associated with class labels!

For a given \mathcal{S}, the probability $\sigma_{1}(\mathcal{S})=10$ and $\sigma_{0}(\mathcal{S})=0$ is
$(1 / 2)^{10}=1 / 1024$
In expectation, there will be 6 patterns with
$\sigma_{1}(\mathcal{S})=10$ and $\sigma_{0}(\mathcal{S})=0$ and they are all false discoveries!

Where is the problem?
We selected hypotheses based on $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$,

Where is the problem?
We selected hypotheses based on $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$, and $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$ is clearly related to the p-value

Where is the problem？

We selected hypotheses based on $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$ ， and $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$ is clearly related to the p－value

So we have essentially looked at p－values of all hypotheses and pretended we did not！$⿴ 囗 十$

Where is the problem?

We selected hypotheses based on $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$, and $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$ is clearly related to the p-value
So we have essentially looked at p-values of all hypotheses and pretended we did not! (图

Where is the problem?

We selected hypotheses based on $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$, and $\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S})$ is clearly related to the p-value
So we have essentially looked at p-values of all hypotheses and pretended we did not! F 娄

When in doubt: assume you have looked at all hypotheses! ${ }_{47 / 135}$

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR depend on the set \mathcal{H} of hypotheses, e.g., on its size.

A smaller \mathcal{H} may lead to a higher corrected significance threshold, thus to higher power.

Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR depend on the set \mathcal{H} of hypotheses, e.g., on its size.

A smaller \mathcal{H} may lead to a higher corrected significance threshold, thus to higher power.

Question: can we shrink \mathcal{H} a posteriori?
I.e., Can we use \mathcal{D} to select $\mathcal{H}^{\prime} \subsetneq \mathcal{H}$ such that $\mathcal{H} \backslash \mathcal{H}^{\prime}$ only contains non-significant hypotheses?

Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR depend on the set \mathcal{H} of hypotheses, e.g., on its size.

A smaller \mathcal{H} may lead to a higher corrected significance threshold, thus to higher power.

Question: can we shrink \mathcal{H} a posteriori?
I.e., Can we use \mathcal{D} to select $\mathcal{H}^{\prime} \subsetneq \mathcal{H}$ such that $\mathcal{H} \backslash \mathcal{H}^{\prime}$ only contains non-significant hypotheses?

Answer: No... and yes! ;)

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using \mathcal{D}.
2) Use the test results to select which hypotheses to include in \mathcal{H}^{\prime}.
3) Use your favorite MHC to bound the FWER/FDR on \mathcal{H}^{\prime}.

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using \mathcal{D}.
2) Use the test results to select which hypotheses to include in \mathcal{H}^{\prime}.
3) Use your favorite MHC to bound the FWER/FDR on \mathcal{H}^{\prime}.

Selecting \mathcal{H}^{\prime} must be done without performing the tests on \mathcal{D}.

The holdout approach

1. Partition \mathcal{D} into \mathcal{D}_{1} and $\mathcal{D}_{2}: \mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$ and $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\varnothing$.
2. Apply some selection procedure to \mathcal{D}_{1} to select \mathcal{H}^{\prime} (it may include performing the tests on \mathcal{D}_{1}).
3) Perform the individual test for each hypothesis in \mathcal{H}^{\prime} on \mathcal{D}_{2}, using any MHC method.

The holdout approach

1. Partition \mathcal{D} into \mathcal{D}_{1} and $\mathcal{D}_{2}: \mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$ and $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\varnothing$.
2. Apply some selection procedure to \mathcal{D}_{1} to select \mathcal{H}^{\prime}
(it may include performing the tests on \mathcal{D}_{1}).
3) Perform the individual test for each hypothesis in \mathcal{H}^{\prime} on \mathcal{D}_{2}, using any MHC method.

Splitting \mathcal{D} is similar to splitting a labeled set into training and test sets.

An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007

When holdout works and why
Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

When holdout works and why
Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

Such partitioning may not exist or be known.

When holdout works and why

Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:
Split the set of nodes in two and claim that each of the resulting induced subgraphs is a sample from the original distribution: what do you do with edges crossing the two sets?

Formally: holdout works when the elements of \mathcal{D} are identically distributed exchangeable random variables.

How selective shall we be?

$\mathcal{Z}_{\alpha} \subseteq \mathcal{H}:$ set of α-significant hypotheses.

When selecting \mathcal{H}^{\prime}, we may get rid of some α-significant ones:

$$
\mathcal{Z}_{\alpha} \cap\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \neq \varnothing
$$

Does the power still increases just because the corrected significance threshold increases?

How selective shall we be?

$\mathcal{Z}_{\alpha} \subseteq \mathcal{H}:$ set of α-significant hypotheses.

When selecting \mathcal{H}^{\prime}, we may get rid of some α-significant ones:

$$
\mathcal{Z}_{\alpha} \cap\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \neq \varnothing .
$$

Does the power still increases just because the corrected significance threshold increases? Unclear!

One can build examples where power \uparrow, \downarrow, or $=$.

Take-away message

Being more or less selective in choosing \mathcal{H}^{\prime} has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout may remove α-significant hypotheses from \mathcal{H}.

OTOH , holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not α-significant.

Take-away message

Being more or less selective in choosing \mathcal{H}^{\prime} has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout may remove α-significant hypotheses from \mathcal{H}.

OTOH, holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not α-significant.

Coming up: how to discard only non- α-significant hypotheses.

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.
Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ $(\Rightarrow n=15, n-\sigma(S)=10)$.

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.
Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ?

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.
Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.
Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	5	0	5
$\ell\left(t_{i}\right)=c_{0}$	0	10	10
Col. m.	5	10	15

A breakthrough [Tarone 1990]
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.
Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	5	0	5
$\ell\left(t_{i}\right)=c_{0}$	0	10	10
Col. m.	5	10	15

minimum attainable p-value $=3 \times 10^{-4}$

A breakthrough [Tarone 1990] (2)
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

A breakthrough [Tarone 1990] (2)
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

A breakthrough [Tarone 1990] (2)
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be Fisher's exact test for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ and $\sigma_{1}(\mathcal{S})=x$.

A breakthrough [Tarone 1990] (2)
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be Fisher's exact test for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ and $\sigma_{1}(\mathcal{S})=x$.

Note that $\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}$

A breakthrough [Tarone 1990] (2)
Fisher's exact test statistic is discrete
\Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be Fisher's exact test for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ and $\sigma_{1}(\mathcal{S})=x$.

Note that $\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\} \Rightarrow$ the range of $p^{F}(\sigma(\mathcal{S}), x)$ depends only on $\sigma(\mathcal{S})$ (since n_{1} is fixed)

A breakthrough [Tarone 1990] (3)

Then the minimum achievable p-value for \mathcal{S} is:

$$
\psi(\sigma(\mathcal{S}))=\min _{\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}
$$

A breakthrough [Tarone 1990] (3)

Then the minimum achievable p-value for \mathcal{S} is:

$$
\psi(\sigma(\mathcal{S}))=\min _{\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}
$$

Tarone's result: if your are testing hypotheses with significance level δ, then hypotheses that cannot be significant do not count as hypotheses for Bonferroni's correction! ;)

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\alpha^{\prime}$

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\alpha^{\prime} \Rightarrow \mathcal{S}$ is untestable.

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\alpha^{\prime} \Rightarrow \mathcal{S}$ is untestable.

Set of testable hypotheses (for significance level δ):

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$
minimum achievable p-value

$$
\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}
$$

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$
minimum achievable p-value
$\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}$
obtained for $x=4: \psi(4)=0.014$.

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$ minimum achievable p-value $\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma_{1}(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}$ obtained for $x=4: \psi(4)=0.014$.
\Rightarrow if significance level is $\delta=0.01$, you do not need to count \mathcal{S} among the hypotheses!

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff $p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff
$p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!
Theorem
The FWER is $\leqslant \alpha$.

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff $p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!

Theorem
The FWER is $\leqslant \alpha$.

Idea: find $\delta^{*}=\max \{\delta: \delta \leqslant \alpha /|\mathcal{T}(\delta)|\}$!

Still with us? :)

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Introduction to LAMP

Intuitively: patterns with low (and very high) support $\sigma(\mathcal{S})$ in the data provide less "evidence" of being significant \rightarrow higher $\psi(\sigma(\mathcal{S}))$!

$$
n=60, n_{1}=30
$$

(from F. Llinares-López, D. Roqueiro,
Significant Pattern Mining for
Biomarker Discovery, ISMB18 Tutorial.)

Introduction to LAMP

Monotonicity of patterns' support:

Theorem
Let \mathcal{S} be an itemset. Then it holds $\sigma\left(\mathcal{S}^{\prime}\right) \leqslant \sigma(\mathcal{S})$ for all $\mathcal{S}^{\prime} \supseteq \mathcal{S}$.

Example:
$\mathcal{S}^{\prime}=\{$ tomato, broccoli $\}, \mathcal{S}=\{$ tomato $\}$ $\sigma\left(\mathcal{S}^{\prime}\right)=4 \leqslant \sigma(\mathcal{S})=5$.

Introduction to LAMP

Monotonicity of patterns' min. achievable p-value:
LAMP ${ }^{1}$: define the function $\hat{\psi}(\cdot)$ as

$$
\hat{\psi}(x)= \begin{cases}\psi(x) & , \text { if } x \leqslant n_{1} \\ \psi\left(n_{1}\right) & , \text { othw }\end{cases}
$$

Theorem

For Fisher's test it holds $\hat{\psi}(x) \leqslant \hat{\psi}(y)$ for all $x \geqslant y$.
(in simpler terms: $\hat{\psi}(x)$ is monotone)

[^0]Introduction to LAMP
Intuition: connection between monotonicity of patterns' min. achievable p-value and patterns' support:
Theorem
Let \mathcal{S} be an itemset. Then $\hat{\psi}(\sigma(\mathcal{S})) \leqslant \hat{\psi}\left(\sigma\left(\mathcal{S}^{\prime}\right)\right)$ for all $\mathcal{S}^{\prime} \supseteq \mathcal{S}$.

Example:
$\mathcal{S}^{\prime}=\{$ wine, coffee $\}, \mathcal{S}=\{$ wine $\}$
$\sigma\left(\mathcal{S}^{\prime}\right)=3 \leqslant \sigma(\mathcal{S})=5$
$\hat{\psi}\left(\sigma\left(\mathcal{S}^{\prime}\right)\right)=\hat{\psi}(3)=0.14 \geqslant \hat{\psi}(\sigma(\mathcal{S}))=\hat{\psi}(5)=0.03$

This holds for itemsets and many other type of patterns with monotonicity of support (i.e., subgraphs, sequential patterns, subgroups, ...)

Intuition: let's benefit from extensive research in Frequent Pattern Mining algorithms!

Frequent Pattern Mining

Frequent Pattern Mining: given \mathcal{D}, compute the set of frequent patterns $\operatorname{FP}(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$ w.r.t. support θ, that is

$$
F P(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\} .
$$

Frequent Pattern Mining

Frequent Pattern Mining: given \mathcal{D}, compute the set of frequent patterns $F P(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$ w.r.t. support θ, that is

$$
F P(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\} .
$$

One solution: Explore the search tree of \mathcal{H}, pruning low-support subtrees:

LAMP

LAMP ${ }^{2}$: first method to compute $\delta^{*}=\max \{\delta: \delta|\mathcal{T}(\delta)| \leqslant \alpha\}$ enumerating Frequent Itemsets.

[^1]
LAMP algorithm

LAMP: compute $\delta^{*}=\max \{\delta: \delta|\mathcal{T}(\delta)| \leqslant \alpha\}$ enumerating Frequent Itemsets.

LAMP algorithm

$$
\text { Let } F P(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\} .
$$

Algorithm 1: LAMP

Input: dataset \mathcal{D}, upper bound to $F W E R \alpha$.
Output: $\delta^{*}=\max \{\delta: \delta \leqslant \alpha /|\mathcal{T}(\delta)|\}$.
$1 \theta \leftarrow n$;
2 while $\alpha /|F P(\mathcal{D}, \mathcal{H}, \theta)| \geqslant \hat{\psi}(\theta)$ do $\theta \leftarrow \theta-1$;
3 return $\alpha /|F P(\mathcal{D}, \mathcal{H}, \theta+1)|$;

LAMP algorithm

Let $\operatorname{FP}(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\}$.

Algorithm 2: LAMP

Input: dataset \mathcal{D}, upper bound to $F W E R \alpha$.
Output: $\delta^{*}=\max \{\delta: \delta \leqslant \alpha /|\mathcal{T}(\delta)|\}$.
$1 \theta \leftarrow n$;
2 while $\alpha /|F P(\mathcal{D}, \mathcal{H}, \theta)| \geqslant \hat{\psi}(\theta)$ do $\theta \leftarrow \theta-1$;
3 return $\alpha /|F P(\mathcal{D}, \mathcal{H}, \theta+1)|$;
Problem: the same patterns are explored many times!
i.e.: all $\mathcal{S} \in \operatorname{FP}(\mathcal{D}, \mathcal{H}, \theta)$ are explored again when $\operatorname{FP}(\mathcal{D}, \mathcal{H}, \theta-1)$ is explored

LAMP

For $\theta=\theta_{2}$ we count again all patterns
already counted for $\theta=\theta_{1} \geqslant \theta_{2}!$

LAMP

For $\theta=\theta_{2}$ we count again all patterns
already counted for $\theta=\theta_{1} \geqslant \theta_{2}$!
Can we count patterns only once?

SupportIncrease

SupportIncrease ${ }^{3}$: LAMP with only one Depth-First (DF) exploration of \mathcal{H}.

[^2]
LAMP: Experimental Results

(imgs. from LAMP)

$$
\text { Estimated } F W E R \text { of LAMP vs Bonferroni correction. }
$$

Mining Significant Subgraphs ${ }^{5}$

Goal: find induced subgraphs that are significantly enriched in a class of labelled graphs
(imgs. from ${ }^{4}$)

[^3]
LAMP for subgraphs (2) PTC(MR)

D\&D

NCl167

Max. size of subgraph nodes Max. size of subgraph nodes
ENZYMES

From M. Sugiyama,F. Llinares-López, N. Kasenburg, K. M. Borgwardt. Significant subgraph mining with multiple testing correction. In Proc. of ICDM (2015).

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment. Validity of this assumption depends on how the data is collected!

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment. Validity of this assumption depends on how the data is collected!
In many cases, only n_{0}, n_{1}, and n are fixed, while $\sigma(\mathcal{S})$ depends on the data \rightarrow Unconditional Test!

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment. Validity of this assumption depends on how the data is collected!
In many cases, only n_{0}, n_{1}, and n are fixed, while $\sigma(\mathcal{S})$ depends on the data \rightarrow Unconditional Test!

Not used in practice, mainly for computational reasons...
Until today ${ }^{-}$

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i}{ }^{\prime \prime} \mid " \ell\left(t_{i}\right)=c_{j}{ }^{\prime \prime}\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i} "\right)$.

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j} "\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i}{ }^{\prime \prime}\right)$. Let $a=\sigma(\mathcal{S}), b=\sigma_{1}(\mathcal{S})$:

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j} "\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i}\right.$ "). Let $a=\sigma(\mathcal{S}), b=\sigma_{1}(\mathcal{S})$:

$$
\begin{aligned}
& P(a, b \mid \pi)=\binom{n_{1}}{b}\binom{n-n_{1}}{a-b}(\pi)^{a}(1-\pi)^{n-a} \\
& T(a, b, \pi)=\{(x, y): P(x, y \mid \pi) \leqslant P(a, b \mid \pi)\} \\
& \phi(a, b, \pi)=\sum_{(x, y) \in T(a, b, \pi)} P(x, y \mid \pi)
\end{aligned}
$$

p-value: $p(a, b)=\max _{\pi}\{\phi(a, b, \pi)\}$

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j} "\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i}\right.$ "). Let $a=\sigma(\mathcal{S}), b=\sigma_{1}(\mathcal{S})$:

$$
\begin{aligned}
& P(a, b \mid \pi)=\binom{n_{1}}{b}\binom{n-n_{1}}{a-b}(\pi)^{a}(1-\pi)^{n-a} \\
& T(a, b, \pi)=\{(x, y): P(x, y \mid \pi) \leqslant P(a, b \mid \pi)\} \\
& \phi(a, b, \pi)=\sum_{(x, y) \in T(a, b, \pi)} P(x, y \mid \pi)
\end{aligned}
$$

p-value: $p(a, b)=\max _{\pi}\{\phi(a, b, \pi)\} \rightarrow$ hard to compute!

Efficient Unconditional Testing: SPuManTE!

(Poster \#146 on Tuesday!)
${ }^{6}$ L. Pellegrina, M. Riondato, and F. Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". KDD 2019.

SPuManTE (1)

1) Computes confidence intervals $C_{j}(\mathcal{S})$ for $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i}{ }^{\prime} \mid " \ell\left(t_{i}\right)=c_{j} "\right)$;

SPuManTE (1)

1) Computes confidence intervals $C_{j}(\mathcal{S})$ for $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i}{ }^{\prime} \mid\right.$ " $\ell\left(t_{i}\right)=c_{j}$ " $)$;
How? Compute an upper bound, for all $j \in\{0,1\}$, on

$$
\sup _{\mathcal{S} \in \mathcal{H}}\left|\pi_{\mathcal{S}, j}-\frac{\sigma_{j}(\mathcal{S})}{n_{j}}\right|
$$

(note: $\sigma_{j}(\mathcal{S}) / n_{j}$ is observed from $\mathcal{D}, \pi_{\mathcal{S}, j}$ is unknown) with probability $\geqslant 1-\delta(\delta \leqslant \alpha$ for $F W E R$ control $)$,

SPuManTE (1)

1) Computes confidence intervals $C_{j}(\mathcal{S})$ for
$\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i}{ }^{\prime \prime} \mid " \ell\left(t_{i}\right)=c_{j}{ }^{\prime}\right)$;
How? Compute an upper bound, for all $j \in\{0,1\}$, on

$$
\sup _{\mathcal{S} \in \mathcal{H}}\left|\pi_{\mathcal{S}, j}-\frac{\sigma_{j}(\mathcal{S})}{n_{j}}\right|
$$

(note: $\sigma_{j}(\mathcal{S}) / n_{j}$ is observed from $\mathcal{D}, \pi_{\mathcal{S}, j}$ is unknown) with probability $\geqslant 1-\delta(\delta \leqslant \alpha$ for $F W E R$ control), by upper bounding ${ }^{7}$ the Rademacher Complexity of \mathcal{H}. No assumptions on the input distribution: only information from \mathcal{D} !

[^4]
SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (;) on the event $E_{\mathcal{S}}=" C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=C(\mathcal{S})=\varnothing$ ".

SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (;) on the event $E_{\mathcal{S}}=$ " $C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=C(\mathcal{S})=\varnothing$ ".
p-value p_{S} according to UT:

$$
p_{S}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\sigma(S), \sigma_{1}(S), \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (;) on the event $E_{\mathcal{S}}=$ " $C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=C(\mathcal{S})=\varnothing$ ".
p-value p_{S} according to UT:

$$
p_{S}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\sigma(S), \sigma_{1}(S), \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

\rightarrow A pattern is flagged as significant if

$$
C(\mathcal{S})=\varnothing
$$

The confidence of the validity of $C(\mathcal{S})$ provides $F W E R$ control.

SPuManTE (3)

p-value p_{S} according to UT:

$$
p_{S}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\sigma(S), \sigma_{1}(S), \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

Case $C(\mathcal{S}) \neq \varnothing$: still hard to compute! $\boldsymbol{\sigma}^{\text {圈 }}$

SPuManTE (3)

p-value p_{S} according to UT:

$$
p_{S}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\sigma(S), \sigma_{1}(S), \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

Case $C(\mathcal{S}) \neq \varnothing$: still hard to compute! , 图 2
3) Upper and Lower bounds to p_{S}, and efficient algorithms to compute them \rightarrow requirements to combine UT with LAMP.

SPuManTE (4)
Let

$$
\bar{\pi}_{\mathcal{S}}=\frac{\sigma(\mathcal{S})}{n} .
$$

Lower bound $\check{p}_{\mathcal{S}}$ to p-value $p_{\mathcal{S}}$:

$$
\check{p}_{\mathcal{S}}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \phi\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \bar{\pi}_{\mathcal{S}}\right) & , \text { othw }\end{cases}
$$

SPuManTE (4)

Let

$$
\bar{\pi}_{\mathcal{S}}=\frac{\sigma(\mathcal{S})}{n} .
$$

Lower bound $\check{p}_{\mathcal{S}}$ to p-value $p_{\mathcal{S}}$:

$$
\check{p}_{\mathcal{S}}= \begin{cases}0 & , \text { if } C(\mathcal{S})=\varnothing \\ \phi\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \bar{\pi}_{\mathcal{S}}\right) & , \text { othw }\end{cases}
$$

Compute $\phi\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \bar{\pi}_{\mathcal{S}}\right)$ efficiently? Yes! :)
(For more details: paper or come to talk to \#146 poster! ©)

Upper bound $\hat{p}_{\mathcal{S}}$ to p-value $p_{\mathcal{S}}$:

$$
\hat{p}_{\mathcal{S}}=P\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}) \mid \bar{\pi}\right)\left(n_{0}+1\right)\left(n_{1}+1\right)
$$

Theorem
$p_{\mathcal{S}} \leqslant \widehat{p}_{\mathcal{S}}$.

SPuManTE: Experimental Results

Comparison of p-values of Fisher's and Barnard's tests w.r.t. the exact p-value (under the unconditional null hypothesis) for all contingency tables with $n=10^{4}, n_{1}=0.25 \cdot n$, $\sigma(\mathcal{S})=0.1 \cdot n$.

SPuManTE: Experimental Results

- \ddagger - breast-cancer (F)	- - - retail (F)	- - covtype (F)
-O- breast-cancer (UT)	-- retail (UT)	-- covtype (UT)
...** breast-cancer (UT*)	...×.. retail (UT*)	...×.. covtype (UT*)

Comparison of number of significant patterns using Fisher's test (F), UT (upper bound $\hat{p}_{\mathcal{S}}$ to p-values), UT* (lower bound $\check{p}_{\mathcal{S}}$ to p-values).
Additional results: may
not be well supported by the data!

SPuManTE: Experimental Results

- - $^{\text {- }}$ breast-cancer (F)	- - - retail (F)	- - - covtype (F)
-o breast-cancer (UT)	-o retail (UT)	-- covtype (UT)
.... \times breast-cancer (UT*)	$\cdots \times$ retail (UT*)	...*. covtype (UT*)

Running times of LAMP with Fisher's test (F), SPuManTE using UT and UT*. SPuManTE: very efficient!

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Permutation Testing

Main idea: estimate the null distribution by randomly perturbing the observed data.

Pro: takes advantage of the dependence structure of the hypothesis
Cons: computationally expensive and formally imprecise

Settings

\mathcal{D}_{0} : observed dataset as a binary matrix.	1	0	1	1
E.g., a transactional dataset	0	1	1	0
(rows: transactions: columns: items)	1	0	1	0
	1	0	0	1

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}.
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

Settings

\mathcal{D}_{0} : observed dataset as a binary matrix.
E.g., a transactional dataset

3	1	3	2	
1	0	1	1	3
0	1	1	0	2
1	0	1	0	2
1	0	0	1	2

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}.
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

P: a set of properties of \mathcal{D}_{0} considered important, characteristics.
E.g., the rows and columns totals

Settings

\mathcal{D}_{0} : observed dataset as a binary matrix.

3	1	3	2	
1	0	1	1	3
0	1	1	0	2
1	0	1	0	2
1	0	0	1	2

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}.
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

P: a set of properties of \mathcal{D}_{0} considered important, characteristics.
E.g., the rows and columns totals

Question: Is T_{0} a "consequence" of \mathbf{P} ?

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical' for datasets satisfying \mathbf{P}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D})$ close to T_{0} in a dataset \mathcal{D} satisfying \mathbf{P}.

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical' for datasets satisfying \mathbf{P}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D})$ close to T_{0} in a dataset \mathcal{D} satisfying \mathbf{P}.
l.e., let $\mathbb{D}_{\mathbf{P}}$: set of datasets satisfying \mathbf{P}, then

$$
Q\left(T_{0}\right)=\min \left\{\underset{\mathcal{U}}{\operatorname{Pr}}\left(\mathcal{A}(\mathcal{D}) \geqslant T_{0}\right), \underset{\mathcal{U}}{\operatorname{Pr}}\left(\mathcal{A}(\mathcal{D})<T_{0}\right)\right\} \gg 0
$$

\mathcal{U} : uniform distribution over $\mathbb{D}_{\mathbf{P}}$.

Null distribution

To test H_{0}, we need a quantitative approach:
For $\alpha \in(0,1)$, if $Q\left(T_{0}\right)<\alpha$ then reject H_{0}.

Null distribution

To test H_{0}, we need a quantitative approach:
For $\alpha \in(0,1)$, if $Q\left(T_{0}\right)<\alpha$ then reject H_{0}.
Null distribution $\Theta=\Theta(\mathcal{A}, \mathbf{P})$ over values of $T=\mathcal{A}(\mathcal{D}), \mathcal{D} \in \mathbb{D}_{\mathbf{P}}$.
Θ has c.d.f.

$$
\theta(v)=\operatorname{Pr}_{\mathcal{U}}(T=\mathcal{A}(\mathcal{D}) \geqslant v)=\frac{\left|\left\{\mathcal{D} \in \mathbb{D}_{\mathbf{P}}: T=\mathcal{A}(\mathcal{D}) \geqslant v\right\}\right|}{\left|\mathbb{D}_{\mathbf{P}}\right|}
$$

Null distribution

To test H_{0}, we need a quantitative approach:
For $\alpha \in(0,1)$, if $Q\left(T_{0}\right)<\alpha$ then reject H_{0}.
Null distribution $\Theta=\Theta(\mathcal{A}, \mathbf{P})$ over values of $T=\mathcal{A}(\mathcal{D}), \mathcal{D} \in \mathbb{D}_{\mathbf{P}}$.
Θ has c.d.f.

$$
\theta(v)=\underset{\mathcal{U}}{\operatorname{Pr}}(T=\mathcal{A}(\mathcal{D}) \geqslant v)=\frac{\left|\left\{\mathcal{D} \in \mathbb{D}_{\mathbf{P}}: T=\mathcal{A}(\mathcal{D}) \geqslant v\right\}\right|}{\left|\mathbb{D}_{\mathbf{P}}\right|}
$$

We can use $\theta\left(T_{0}\right)$ to test H_{0} :

$$
\text { if } \min \left\{\theta\left(T_{0}\right), 1-\theta(T)\right\}<\alpha \text {, reject } H_{0} .
$$

Null distribution

To test H_{0}, we need a quantitative approach:
For $\alpha \in(0,1)$, if $Q\left(T_{0}\right)<\alpha$ then reject H_{0}.
Null distribution $\Theta=\Theta(\mathcal{A}, \mathbf{P})$ over values of $T=\mathcal{A}(\mathcal{D}), \mathcal{D} \in \mathbb{D}_{\mathbf{P}}$.
Θ has c.d.f.

$$
\theta(v)=\operatorname{Pr}(T=\mathcal{U}(\mathcal{D}) \geqslant v)=\frac{\left|\left\{\mathcal{D} \in \mathbb{D}_{\mathbf{P}}: T=\mathcal{A}(\mathcal{D}) \geqslant v\right\}\right|}{\left|\mathbb{D}_{\mathbf{P}}\right|}
$$

We can use $\theta\left(T_{0}\right)$ to test H_{0} :

$$
\text { if } \min \left\{\theta\left(T_{0}\right), 1-\theta(T)\right\}<\alpha \text {, reject } H_{0} .
$$

IssuE: deriving θ is infeasible for $\operatorname{most}(\mathcal{A}, \mathbf{P})$.

Empiricism to the rescue

Issue: deriving θ is infeasible for most $(\mathcal{A}, \mathbf{P})$.
Solution: approximate θ using an empirical c.d.f. $\tilde{\theta}$.

Empiricism to the rescue

Issue: deriving θ is infeasible for most $(\mathcal{A}, \mathbf{P})$.
SOLUTION: approximate θ using an empirical c.d.f. $\tilde{\theta}$.

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$.
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from \mathbf{T} :
$\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right) \in[0,0.5$
4. If $\tilde{p}<\alpha$, reject H_{0}.

Why does it work?

It is a consistent approach:

As the number $k=|\mathbf{D}|$ of samples grows, the empirical c.d.f. $\tilde{\theta}$ converges to θ, thus, \tilde{p} converges to the exact p-values.

Warning: Convergence happens in the limit, but there are finite-sample deviation bounds for $\tilde{\theta}$ from θ.

The crux of the matter

The steps again:

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$.
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from \mathbf{T} :

$$
\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right)
$$

4. If $\tilde{p}<\alpha$, reject H_{0}.

The crux of the matter

The steps again:

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$.
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from \mathbf{T} :

$$
\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right)
$$

4. If $\tilde{p}<\alpha$, reject H_{0}. Easy

The crux of the matter

The steps again:

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$.
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from T: Easy

$$
\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right)
$$

4. If $\tilde{p}<\alpha$, reject H_{0}. Easy

The crux of the matter

The steps again:

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$. Easy
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from T: Easy

$$
\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right)
$$

4. If $\tilde{p}<\alpha$, reject H_{0}. Easy

The crux of the matter

The steps again:

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}\right\} \subseteq \mathbb{D}_{\mathbf{P}}$ independent uniform samples. How?
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{k}\right\}$. Easy
3. Compute an empirical p-value from the $\tilde{\theta}$ arising from T: Easy

$$
\tilde{p}=\frac{1}{k+1}\left(\min \left\{\left|\left\{i \in[k] \mid T_{i}<T_{0}\right\}\right|,\left|\left\{i \in[k] \mid T_{i}>T_{0}\right\}\right|\right\}+1\right)
$$

4. If $\tilde{p}<\alpha$, reject H_{0}. Easy

Perturbing the data

Assumption: there exists a perturbation operation

$$
\phi: \mathbb{D}_{\mathbf{P}} \times \underbrace{\mathcal{Y}}_{\text {parameters }} \rightarrow \mathbb{D}_{\mathbf{P}}
$$

s.t. for any $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime} \in \mathbb{D}_{\mathbf{P}}, \mathcal{D}^{\prime}$ can be obtained by repeatedly applying ϕ to $\mathcal{D}^{\prime \prime}$.
I.e., there exists a finite sequence $Y_{1}, \ldots, Y_{\ell}, Y_{i} \in \mathcal{Y}$ s.t.

$$
\mathcal{D}^{\prime \prime}=\phi\left(\phi\left(\phi\left(\cdots\left(\phi\left(\mathcal{D}^{\prime \prime}, Y_{1}\right), Y_{2}\right), \cdots\right), Y_{\ell}\right)\right)
$$

If $\mathcal{D}^{\prime \prime}=\phi\left(\mathcal{D}^{\prime}, y\right)$, then there exists $y^{-1} \in Y$ s.t. $\mathcal{D}^{\prime}=\phi\left(\mathcal{D}^{\prime \prime}, y^{-1}\right)$.

Example: perturbation for rows and columns sums

1. Take two rows u and v and two columns A and B of \mathcal{D}_{0} such that $u(A)=v(B)=1$ and $u(B)=v(A)=0$;
2. Change the rows so that

$$
u(B)=v(A)=1 \text { and } u(A)=v(B)=0
$$

Fig. 1. A swap in a $0-1$ matrix.

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.
\mathcal{Y} is the set of quadruples of two rows and two columns indices.

Generating the samples

$G=\left(\mathbb{D}_{\mathbf{P}}, E\right)$: directed graph s.t. $\left(\mathcal{D}, \mathcal{D}^{\prime}\right) \in E$ if \mathcal{D}^{\prime} can be obtained from \mathcal{D} with one perturbation:

$$
\left(\mathcal{D}, \mathcal{D}^{\prime}\right) \in E \Leftrightarrow \exists y \in \mathcal{Y} \text { s.t. } \mathcal{D}^{\prime}=\phi(\mathcal{D}, y)
$$

Add self-loops and run Metropolis-Hastings on the resulting graph G^{\prime} to obtain independent and uniform samples.

Running Metropolis-Hastings

M-H performs a random walk on G^{\prime} with uniform stationary distribution.

For each (visited) $\mathcal{D}, \mathrm{M}-\mathrm{H}$ needs its neighbors

$$
\mathrm{N}(\mathcal{D})=\left\{\mathcal{D}^{\prime} \in \mathbb{D}_{\mathbf{P}}: \exists y \in \mathcal{Y} \text { s.t. } \mathcal{D}^{\prime}=\phi(\mathcal{D}, y)\right\}
$$

Computing $\mathrm{N}(\mathcal{D})$ requires to find all quadruplets $(u, v, A, B) \in \mathcal{Y}$ leading to valid perturbations from \mathcal{D}.

Gionis et al. show how to get $\mathrm{N}(\mathcal{D})$ in expected constant time when no row/column has too many 1 s .

Mixing Time

The samples $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ must be independent and uniform
M-H must make at least M moves after taking each sample M: mixing time of G^{\prime} with M-H transition probabilities.

Mixing Time

The samples $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ must be independent and uniform
M-H must make at least M moves after taking each sample M: mixing time of G^{\prime} with $\mathrm{M}-\mathrm{H}$ transition probabilities.

Deriving M is usually infeasible so M is fixed to be "large enough" after experimentation.

Advantages and disadvantages of permutation testing

Conceptually very natural :

Requires a perturbation operation ϕ for $\mathbf{P}:$

Computationally very expensive:
sample generation + running \mathcal{A} on each sample G娄
"Empirical everything": p-value, independence, uniformity, ... 图

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Westfall-Young (WY ${ }^{8}$) Permutation Testing

Randomly shuffle the labels; compute patterns' p-values w.r.t. the random labels.

Original Data

Random Permutations

[^5]
Westfall-Young $\left(W Y^{9}\right)$ Permutation Testing

Any association found on the random permutations is a false positive: directly estimate the p-values from the null hypothesis joint distribution \rightarrow account for dependencies of hypotheses

Original Data

Random Permutations

[^6]WY Permutation Testing: formally

$$
\ell_{j}\left(t_{i}\right)=j \text {-th permuted label of } t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]
$$

WY Permutation Testing: formally
$\ell_{j}\left(t_{i}\right)=j$-th permuted label of $t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]$
Example:

Original Data

Random Permutations

WY Permutation Testing: formally

$\ell_{j}\left(t_{i}\right)=j$-th permuted label of $t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]$

$$
p_{\min }^{j}=\min _{\mathcal{S} \in \mathcal{H}}\left\{p\left(\sigma(\mathcal{S}), \sigma_{1}^{j}(\mathcal{S})\right)\right\} \quad, \quad \overline{F W E R}(x)=\frac{1}{j_{p}} \sum_{i=1}^{j_{p}} \mathbb{1}\left[p_{\min }^{j} \leqslant x\right]
$$

WY Permutation Testing: formally
$\ell_{j}\left(t_{i}\right)=j$-th permuted label of $t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]$

$$
p_{\min }^{j}=\min _{\mathcal{S} \in \mathcal{H}}\left\{p\left(\sigma(\mathcal{S}), \sigma_{1}^{j}(\mathcal{S})\right)\right\}, \quad \begin{gathered}
\overline{F W E R}(x)=\frac{1}{j_{p}} \sum_{i=1}^{j_{p}} \mathbb{1}\left[p_{\min }^{j} \leqslant x\right] \\
p_{\min }^{j}
\end{gathered}
$$

Compute $\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$

$$
\left(j_{p} \sim 10^{3}-10^{4} \text { for } \alpha \sim 0.05\right)
$$

WY Permutation Testing: formally
$\ell_{j}\left(t_{i}\right)=j$-th permuted label of $t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]$

$$
p_{\min }^{j}=\min _{\mathcal{S} \in \mathcal{H}}\left\{p\left(\sigma(\mathcal{S}), \sigma_{1}^{j}(\mathcal{S})\right)\right\}, \quad \overline{\overline{F W E R}(x)=\frac{1}{j_{p}} \sum_{i=1}^{j_{p}} \mathbb{1}\left[p_{\min }^{j} \leqslant x\right]} \begin{gathered}
p_{\min }^{j}
\end{gathered}
$$

Compute $\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$

$$
\left(j_{p} \sim 10^{3}-10^{4} \text { for } \alpha \sim 0.05\right)
$$

Output $\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \delta^{*}\right\}$.

WY Permutation Testing: formally
$\ell_{j}\left(t_{i}\right)=j$-th permuted label of $t_{i}, \quad \sigma_{1}^{j}(\mathcal{S})=\sum_{i=1}^{n} \phi_{\mathcal{S}}\left(t_{i}\right) \mathbb{1}\left[\ell_{j}\left(t_{i}\right)=c_{1}\right]$

> Compute $\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$ $\left(j_{p} \sim 10^{3}-10^{4}\right.$ for $\left.\alpha \sim 0.05\right)$

Output $\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \delta^{*}\right\}$.
Problem: exhaustive enumeration of \mathcal{H} to compute $p_{\text {min }}^{j}$.

Computing $p_{\text {min }}^{j}$: FASTWY

How to compute $p_{\min }^{j}$ efficiently?

Computing $p_{\min }^{j}$: FASTWY

How to compute $p_{\min }^{j}$ efficiently?

Tarone saves us again ;

FASTWY ${ }^{10}$: Intuition:

$$
\begin{aligned}
\hat{\psi}(\mathcal{S}) \geqslant p_{\min }^{j} & \Rightarrow p\left(\sigma(\mathcal{S}), \sigma_{1}^{j}(\mathcal{S})\right) \geqslant p_{\min }^{j} \\
\text { Pattern } \mathcal{S} \text { is untestable } & \Rightarrow \text { cannot improve } p_{\min }^{j}!
\end{aligned}
$$

[^7]
Computing $p_{\min }^{j}$: FASTWY

(improved version ${ }^{11}$ of) FASTWY: computes efficiently $p_{\min }^{j}$ with a branch-and-bound search over \mathcal{H}, pruning subtrees with $\hat{\psi}(\cdot)$: start with $\theta=1$ and $p_{\text {min }}^{j}=1$; explore

[^8]
FASTWY

Issues of FASTWY:

1) repeat the procedure j_{p} times $\left(j_{p} \sim 10^{3}-10^{4}\right)$;
2) for some $j \in\left[1, j_{p}\right]$:
$p_{\text {min }}^{j}$ may not be very small $\rightarrow \theta^{j}$ very small \rightarrow impractically large number of hypotheses to explore.

WYlight

WYlight ${ }^{12}$: Intuition: to find δ^{*} we only need to compute exactly the lower α-quantile of $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{j_{p}}$.

[^9]
WYlight

WYlight algorithm: one DF exploration of \mathcal{H} processing all j_{p} permutations at once.

WYlight ${ }^{13}$ - Running time

[^10]
WYlight ${ }^{14}$ - Memory

${ }^{14}$ F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient significant pattern mining via permutation testing, KDD 2015.

Too many results!

Motivation: for many

 datasets, impractically large set of results ($S P(0.05)$) are found even when controlling $F W E R \leqslant 0.05$:| dataset | $\|D\|$ | $\|I\|$ | avg | n_{1} / n | $S P(0.05)$ |
| :---: | ---: | ---: | :---: | :---: | :---: |
| svmguide3 (L) | 1,243 | 44 | 21.9 | 0.23 | 36,736 |
| chess (U) | 3,196 | 75 | 37 | 0.05 | $>10^{7}$ |
| mushroom (L) | 8,124 | 118 | 22 | 0.48 | 71,945 |
| phishing (L) | 11,055 | 813 | 43 | 0.44 | $>10^{7}$ |
| breast cancer (L) | 12,773 | 1,129 | 6.7 | 0.09 | 6 |
| a9a (L) | 32,561 | 247 | 13.9 | 0.24 | 348,611 |
| pumb-star (U) | 49,046 | 7117 | 50.5 | 0.44 | $>10^{7}$ |
| bms-web1 (U) | 58,136 | 60,978 | 2.51 | 0.03 | 704,685 |
| connect (U) | 67,557 | 129 | 43 | 0.49 | $>10^{8}$ |
| bms-web2 (U) | 77,158 | 330,285 | 4.59 | 0.04 | 289,012 |
| retail (U) | 88,162 | 16,470 | 10.3 | 0.47 | 3,071 |
| ijcnn1 (L) | 91,701 | 44 | 13 | 0.10 | 607,373 |
| T10I4D100K (U) | 100,000 | 870 | 10.1 | 0.08 | 3,819 |
| T40I10D100K (U) | 100,000 | 942 | 39.6 | 0.28 | $5,986,439$ |
| codrna (L) | 271,617 | 16 | 8 | 0.33 | 4,088 |
| accidents (U) | 340,183 | 467 | 33.8 | 0.49 | $>10^{7}$ |
| bms-pos (U) | 515,597 | 1,656 | 6.5 | 0.40 | $26,366,131$ |
| covtype (L) | 581,012 | 64 | 11.9 | 0.49 | 542,365 |
| susy (U) | $5,000,000$ | 190 | 43 | 0.48 | $>10^{7}$ |

TopKWY

What if we want (more efficiently!) only the top- k significant patterns, retaining the guarantees of WY procedure? \rightarrow TopKWY ${ }^{15}$!
$p^{k}=k$-th smallest element of $\left\{p_{\mathcal{S}}: \mathcal{S} \in \mathcal{H}\right\}$,
$\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$,
$\bar{\delta}=\min \left\{p^{k}, \delta\right\}$.

Set of top- k significant patterns:

$$
\operatorname{TOPKSP}(\mathcal{D}, \mathcal{H}, \alpha, k):=\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \bar{\delta}\right\} .
$$

[^11]
TopKWY

Intuition: to compute $\operatorname{TOPKSP}(\mathcal{D}, \mathcal{H}, \alpha, k)$ we only need to compute exactly the values of the set $\left\{p_{\min }^{j}\right\}_{j=1}^{\jmath_{p}}$ that are $\leqslant \bar{\delta}$.

TopKWY

Algorithm: Best First (BF) exploration of \mathcal{H} to compute $\bar{\delta}$.
(Approach similar to TopKMiner for top- k frequent itemsets). start with $\theta=1$ and $p_{\text {min }}^{j}=1, \forall j$; explore patterns with BF exploration, updating $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{j_{p}}$ and p^{k}; increase θ while exploring if $\min \left\{\alpha\right.$-quant. of $\left.\left\{p_{\min }^{j}\right\}_{j=1}^{j_{p}}, p^{k}\right\} \leqslant \hat{\psi}(\theta)$
(imgs. from LAMP)

TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns:

Theorem
Let $\bar{\delta}=\min \left\{p^{k}, \delta\right\}$, and $\theta^{*}=\max \{x: \hat{\psi}(x)>\bar{\delta}\}$.
TopKWY will process only the set $\operatorname{FP}\left(\mathcal{D}, \mathcal{H}, \theta^{*}\right)=\mathcal{T}(\bar{\delta})$.
\rightarrow the DF search always explores a super-set of $\mathcal{T}(\bar{\delta})$.
2) Improved bounds to skip the processing of the permutations for many patterns.
(More details on the paper :) $^{\text {) }}$

TopKWY: Running time

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions
4. Final Remarks

What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
False Discovery Rate (FDR): $\mathbb{E}[V / R]$ (assuming $V / R=0$ when $R=0$).

What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
False Discovery Rate (FDR): $\mathbb{E}[V / R]$ (assuming $V / R=0$ when $R=0$).

Significant pattern mining while controlling the FDR?

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold $a \in(0,1)$, probability class label is c_{1} when pattern \mathcal{S} is present is $\geqslant a$ [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold $a \in(0,1)$, probability class label is c_{1} when pattern \mathcal{S} is present is $\geqslant a$ [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

Not a solved problem!

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions
4. Final Remarks

Using additional information

> Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Using additional information

> Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Example: the support $\sigma(\mathcal{S})$ of \mathcal{S} has an impact on its minimum achivable p-value for Fisher's exact test

Using additional information

Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Example: the support $\sigma(\mathcal{S})$ of \mathcal{S} has an impact on its minimum achivable p-value for Fisher's exact test

The covariate can be used to weight hypotheses/patterns or, equivalently, use different correction thresholds for False Discovery Rate (FDR) based on the covariate

Independent Hypothesis Weighting (IHW) ${ }^{16}$

[^12]
Independent Hypothesis Weighting (IHW) ${ }^{16}$

${ }^{16}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

Independent Hypothesis Weighting (IHW) ${ }^{16}$

${ }^{16}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions
4. Final Remarks

No conditioning?

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).

No conditioning?

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).
Q: Shall we stop conditioning on the row totals? In general, removing assumptions is a blessed goal.

Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the likelihood.

It destroys the repeated-sampling (frequentist) interpretation of p-value, because it reduces the sample space:
fewer datasets are considered possible, often too few to be realistic.

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! ;)

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! ;)

KDD settings: \mathcal{D} is built by actually sampling from a distribution whose domain also include the group label:
the row totals are random variables and rightly so.
So let's stop conditioning, and only keep the sample size n as fixed.

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! ;)

KDD settings: \mathcal{D} is built by actually sampling from a distribution whose domain also include the group label:
the row totals are random variables and rightly so.
So let's stop conditioning, and only keep the sample size n as fixed.
How? ${ }^{\text {圈 }}$

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

Final Remarks

Knowl. Disc. should be based on hypothesis testing: the data is never the whole universe.

Lots of room for research: we scratched the surface
Statistics: tests with higher power, fewer assumptions
CS: scalability (wrt many dimensions) is still an issue.
Balance theory and practice (that's what we are good at)
Work with real scientists, with real data, with real problems.

Hypothesis Testing and Statistically-sound Pattern Mining

Tutorial - KDD 2019

Leonardo Pellegrina ${ }^{1}$ Matteo Riondato ${ }^{2}$ Fabio Vandin ${ }^{1}$

${ }^{1}$ Dept. of Information Engineering, University of Padova (IT)
${ }^{2}$ Dept. of Computer Science, Amherst College (USA)

[^0]: ${ }^{1}$ Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of combinatorial regulations. Proceedings of the National Academy of Sciences (2013).

[^1]: ${ }^{2}$ Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of combinatorial regulations. Proceedings of the National Academy of Sciences (2013).

[^2]: ${ }^{3}$ Minato, S. I., Uno, T., Tsuda, K., Terada, A., Sese, J. A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2014)

[^3]: ${ }^{4}$ F. Llinares-López, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB18 Tutorial.
 ${ }^{5}$ M. Sugiyama, F. Llinares-López, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with multiple testing correction. In Proceedings of the International Conference on Data Mining, (2015). 77/135

[^4]: ${ }^{7}$ M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with Rademacher averages. KDD 2015.

[^5]: ${ }^{8}$ P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley-Interscience, 1993.

[^6]: ${ }^{9}$ P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley-Interscience, 1993.

[^7]: ${ }^{10}$ A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial regulation discovery. In IEEE International Conference on Bioinformatics and Biomedicine, 2013.

[^8]: ${ }^{11}$ T. Aika, H. Kim, and J. Sese. High-speed westfall-young permutation procedure for genome-wide association studies, ACM-BCB 2015.

[^9]: ${ }^{12}$ F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient significant pattern mining via permutation testing, KDD 2015.

[^10]: ${ }^{13}$ F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient significant pattern mining via permutation testing, KDD 2015.

[^11]: ${ }^{15}$ L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation testing. KDD 2018.

[^12]: ${ }^{16}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

