Hypothesis Testing and Statistically-sound Pattern Mining Tutorial — SDM'21

Leonardo Pellegrina<sup>1</sup> Matteo Riondato<sup>2</sup> Fabio Vandin<sup>1</sup>

<sup>1</sup>Dept. of Information Engineering, University of Padova (IT)

<sup>2</sup>Dept. of Computer Science, Amherst College (USA)

Tutorial webpage: http://rionda.to/statdmtut

# Slides available from http://rionda.to/statdmtut

# Outline

# 1. Introduction and Theoretical Foundations

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

# Data mining and (inferential) statistics have traditionally two different point of views

# *Data mining* and (inferential) *statistics* have traditionally **two different point of views**

• data mining: the data is the complete representation of the world and of the phenomena we are studying

# Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

# Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

Similar questions but different flavours!

**Data**: information from two online communities  $C_1$  and  $C_2$ , regarding whether each post is in a given topic T.

**Data**: information from two online communities  $C_1$  and  $C_2$ , regarding whether each post is in a given topic T.

Data mining: "what fraction of posts in C<sub>1</sub> are related to T? What fraction of posts in C<sub>2</sub> are related to T?"

**Data**: information from two online communities  $C_1$  and  $C_2$ , regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C<sub>1</sub> are related to T? What fraction of posts in C<sub>2</sub> are related to T?"
- Statistics: "What is the probability that a post from C<sub>1</sub> is related to T? What is the probability that a post from C<sub>2</sub> is related to T?"

**Data**: information from two online communities  $C_1$  and  $C_2$ , regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C<sub>1</sub> are related to T? What fraction of posts in C<sub>2</sub> are related to T?"
- Statistics: "What is the probability that a post from C<sub>1</sub> is related to T? What is the probability that a post from C<sub>2</sub> is related to T?"

Note: the two are clearly related, but different!

How do we **efficiently** identify patterns in data with **guarantees** on the **underlying generative process**?

# How do we **efficiently** identify patterns in data with **guarantees** on the **underlying generative process**?

We use the **statistical hypothesis testing** framework

# Outline

# **1. Introduction and Theoretical Foundations**

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

Statistical Hypothesis Testing

We are given:

- $\blacktriangleright$  a dataset  ${\cal D}$
- ▶ a **question** we want to answer

Statistical Hypothesis Testing

We are given:

- $\blacktriangleright$  a dataset  ${\cal D}$
- ▶ a question we want to answer  $\Rightarrow$  a pattern S

#### Example: market basket analysis

**Dataset** D: transactions = set of items, label (student/professor) **Pattern** S: subset of items (orange, tomato, broccoli)



#### Example: market basket analysis

**Dataset** D: transactions = set of items, label (student/professor) **Pattern** S: subset of items (orange, tomato, broccoli)



9/101

**Question**: is  $\mathcal{S}$  associated with one of the two labels?

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a **null hypothesis**, describing the *default theory*, which corresponds to "nothing interesting" for pattern S.

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a **null hypothesis**, describing the *default theory*, which corresponds to "nothing interesting" for pattern S.

The goal is to use the data to either **reject**  $H_0$  ("S is interesting!") **or not** ("S is not interesting).

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a **null hypothesis**, describing the *default theory*, which corresponds to "nothing interesting" for pattern S.

The goal is to use the data to either **reject**  $H_0$  ("S is interesting!") **or not** ("S is not interesting).

This is decided based on a **test statistic**, that is, a value  $x_S = f_S(\mathcal{D})$  that describes S in  $\mathcal{D}$ 

Let  $x_S = f_S(\mathcal{D})$  the value of the *test statistic* for our dataset  $\mathcal{D}$ .

Let  $x_S = f_S(\mathcal{D})$  the value of the *test statistic* for our dataset  $\mathcal{D}$ .

Let  $X_S$  be the *random variable* describing the value of the test statistic **under the null hypothesis**  $H_0$  (i.e., when  $H_0$  is true)

Let  $x_S = f_S(\mathcal{D})$  the value of the *test statistic* for our dataset  $\mathcal{D}$ .

Let  $X_S$  be the *random variable* describing the value of the test statistic **under the null hypothesis**  $H_0$  (i.e., when  $H_0$  is true)

*p*-value:  $p = \Pr[X_S \text{ more extreme than } x_S : H_0 \text{ is true}]$ 

Let  $x_S = f_S(\mathcal{D})$  the value of the *test statistic* for our dataset  $\mathcal{D}$ .

Let  $X_S$  be the *random variable* describing the value of the test statistic **under the null hypothesis**  $H_0$  (i.e., when  $H_0$  is true)

*p*-value:  $p = \Pr[X_S \text{ more extreme than } x_S : H_0 \text{ is true}]$ 

" $X_S$  more extreme than  $x_S$ ": depends on the test, may be  $X_S \ge x_S$  or  $X_S \le x_S$  or something else...

Let  $x_S = f_S(\mathcal{D})$  the value of the *test statistic* for our dataset  $\mathcal{D}$ .

Let  $X_S$  be the *random variable* describing the value of the test statistic **under the null hypothesis**  $H_0$  (i.e., when  $H_0$  is true)

*p*-value:  $p = \Pr[X_S \text{ more extreme than } x_S : H_0 \text{ is true}]$ 

" $X_S$  more extreme than  $x_S$ ": depends on the test, may be  $X_S \ge x_S$  or  $X_S \le x_S$  or something else...

## **Rejection rule:**

Given a statistical level  $\alpha \in (0, 1)$ : reject  $H_0$  iff  $p \leq \alpha \Rightarrow S$  is significant!

There are two types of errors we can make:

▶ type I error: reject H<sub>0</sub> when H<sub>0</sub> is true ⇒ flag S as significant when it is not (false discovery)

- ▶ type I error: reject H<sub>0</sub> when H<sub>0</sub> is true ⇒ flag S as significant when it is not (false discovery)
- ► type II error: do not reject H<sub>0</sub> when H<sub>0</sub> is false ⇒ do not flag S as significant when it is

- ▶ type I error: reject H<sub>0</sub> when H<sub>0</sub> is true ⇒ flag S as significant when it is not (*false discovery*)
- ▶ type II error: do not reject H<sub>0</sub> when H<sub>0</sub> is false ⇒ do not flag S as significant when it is



- ▶ type I error: reject H<sub>0</sub> when H<sub>0</sub> is true ⇒ flag S as significant when it is not (*false discovery*)
- ▶ type II error: do not reject H<sub>0</sub> when H<sub>0</sub> is false ⇒ do not flag S as significant when it is





There are two types of errors we can make:

- ▶ type I error: reject H<sub>0</sub> when H<sub>0</sub> is true ⇒ flag S as significant when it is not (*false discovery*)
- ▶ type II error: do not reject H<sub>0</sub> when H<sub>0</sub> is false ⇒ do not flag S as significant when it is





#### Theorem

Using the rejection rule, the probability of a type I error is  $\leq \alpha_{12/101}$ 

# Avoiding type I errors is not everything!

# Avoiding type I errors is not everything!

If it was, it would be enough to *never* flag a pattern as significant...

# Avoiding type I errors is not everything!

If it was, it would be enough to *never* flag a pattern as significant...

#### Power:

A test has *power*  $\beta$  if  $\Pr[H_0 \text{ is rejected} : H_0 \text{ is false}] = \beta$ 

# Avoiding type I errors is not everything!

If it was, it would be enough to *never* flag a pattern as significant...

#### Power:

A test has *power*  $\beta$  if  $\Pr[H_0 \text{ is rejected} : H_0 \text{ is false}] = \beta$ 

**Note**: for a test with power  $\beta$ , we have  $\Pr[\text{type II error}] = 1 - \beta$ 

### Statistical Hypothesis Testing: Power

# Avoiding type I errors is not everything!

If it was, it would be enough to *never* flag a pattern as significant...

#### Power:

A test has *power*  $\beta$  if  $\Pr[H_0 \text{ is rejected} : H_0 \text{ is false}] = \beta$ 

**Note**: for a test with power  $\beta$ , we have  $\Pr[\text{type II error}] = 1 - \beta$ 

(Power is not everything: if it was, it would be enough to *always* flag all patterns as significant...)

# Given:

- transactional dataset  $\mathcal{D} = \{t_1, \dots, t_n\}$ , each transaction  $t_i$  has a label  $\ell(t_i) \in \{c_0, c_1\}$
- $\blacktriangleright$  a pattern S

Given:

- transactional dataset  $\mathcal{D} = \{t_1, \dots, t_n\}$ , each transaction  $t_i$  has a label  $\ell(t_i) \in \{c_0, c_1\}$
- $\blacktriangleright$  a pattern S

**Goal:** understand if the appearance of S in transactions ( $S \subseteq t_i$ ) and the transactions labels ( $\ell(t_i)$ ) are *independent*.

Given:

- transactional dataset  $\mathcal{D} = \{t_1, \dots, t_n\}$ , each transaction  $t_i$  has a label  $\ell(t_i) \in \{c_0, c_1\}$
- $\blacktriangleright$  a pattern S

**Goal:** understand if the appearance of S in transactions ( $S \subseteq t_i$ ) and the transactions labels ( $\ell(t_i)$ ) are *independent*.

Null hypothesis  $H_0$ : the events " $S \subseteq t_i$ " and " $\ell(t_i) = c_1$ " are independent.

Given:

- transactional dataset  $\mathcal{D} = \{t_1, \dots, t_n\}$ , each transaction  $t_i$  has a label  $\ell(t_i) \in \{c_0, c_1\}$
- $\blacktriangleright$  a pattern S

**Goal:** understand if the appearance of S in transactions ( $S \subseteq t_i$ ) and the transactions labels ( $\ell(t_i)$ ) are *independent*.

Null hypothesis  $H_0$ : the events " $S \subseteq t_i$ " and " $\ell(t_i) = c_1$ " are independent.

Alternative hypothesis: there is a dependency between " $\mathcal{S}\subseteq t_i$ " and " $\ell(t_i)=c_1$ "

 $S = \{ \text{orange, tomato, broccoli} \}$ 



 $S = \{$ orange, tomato, broccoli $\}$ 



 $H_0$ : presence of S is independent of (not associated with) label "professor"

15/101

Useful representation of the data: *contingency table* 

Useful representation of the data: *contingency table* 

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \subsetneq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

 σ<sub>1</sub>(S) = number of transactions containing S (=support of S)
 with label c<sub>1</sub>

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

 σ<sub>1</sub>(S) = number of transactions containing S (=support of S)
 with label c<sub>1</sub>

•  $\sigma_0(\mathcal{S}) = \text{support of } \mathcal{S} \text{ with label } c_0$ 

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \subsetneq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

 σ<sub>1</sub>(S) = number of transactions containing S (=support of S)
 with label c<sub>1</sub>

• 
$$\sigma_0(\mathcal{S}) = \text{support of } \mathcal{S} \text{ with label } c_0$$

• 
$$\sigma(\mathcal{S}) = \sigma_0(\mathcal{S}) + \sigma_1(\mathcal{S}) = \text{support of } \mathcal{S} \text{ in } \mathcal{D}$$

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

 σ<sub>1</sub>(S) = number of transactions containing S (=support of S)
 with label c<sub>1</sub>

- $\sigma_0(\mathcal{S}) = \text{support of } \mathcal{S} \text{ with label } c_0$
- $\sigma(\mathcal{S}) = \sigma_0(\mathcal{S}) + \sigma_1(\mathcal{S}) = \text{support of } \mathcal{S} \text{ in } \mathcal{D}$
- $n_i$  = number transactions with label  $c_i$

#### Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Test statistic =  $\sigma_1(S)$ 







|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

Value of test statistic =  $\sigma_1(\mathcal{S})$ 

18/101



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

Value of test statistic =  $\sigma_1(\mathcal{S}) = 3$ 

18/101

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Test statistic =  $\sigma_1(S)$ 

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

19/101

Test statistic =  $\sigma_1(S)$ 

*p*-value: how do we compute it?

Useful representation of the data: contingency table

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Test statistic =  $\sigma_1(S)$ 

#### *p*-value: how do we compute it?

Most common method: Fisher's exact test

# Outline

# **1. Introduction and Theoretical Foundations**

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0-\sigma_0(\mathcal{S})$   | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

Assumption: the column marginals ( $\sigma(S)$ ,  $n - \sigma(S)$  and the row marginals ( $n_0$ ,  $n_1$ ) are **fixed**.

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

Assumption: the column marginals ( $\sigma(S)$ ,  $n - \sigma(S)$  and the row marginals ( $n_0$ ,  $n_1$ ) are **fixed**.

 $\Rightarrow$  under the null hypothesis (*independence*), the support of S in class  $c_1$  follows an hypergeometric distribution of parameters n,  $n_1$ , and  $\sigma_S$ 

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

Assumption: the column marginals ( $\sigma(S)$ ,  $n - \sigma(S)$  and the row marginals ( $n_0$ ,  $n_1$ ) are **fixed**.

 $\Rightarrow$  under the null hypothesis (*independence*), the support of S in class  $c_1$  follows an hypergeometric distribution of parameters n,  $n_1$ , and  $\sigma_S$ 

 $\Rightarrow$  the *p*-value is easily computable!



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim$  hypergeometric of parameters 8, 4, 4





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim \text{hypergeometric of parameters 8, 4, 4}$  $\Rightarrow \text{Probability of table} = \Pr(X_{\mathcal{S}} = 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} = 0.228$ 

22/101



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim \text{hypergeometric of parameters 8, 4, 4}$   $\Rightarrow \text{Probability of table} = \Pr(X_{\mathcal{S}} = 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} = 0.228$  $p\text{-value} = \Pr(X_{\mathcal{S}} \ge 3) = \sum_{k \ge 3} \Pr(X_{\mathcal{S}} = k) = 0.243$ 



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

22/101

 $X_{\mathcal{S}} \sim \text{hypergeometric of parameters 8, 4, 4}$   $\Rightarrow \text{Probability of table} = \Pr(X_{\mathcal{S}} = 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} = 0.228$   $p\text{-value} = \Pr(X_{\mathcal{S}} \ge 3) = \sum_{k \ge 3} \Pr(X_{\mathcal{S}} = k) = 0.243$ If  $\alpha = 0.05 \Rightarrow \mathcal{S}$  is not associated with label "professor"

# $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

# $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

Random variables (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)



# $\chi^2 \ {\rm test}$

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

Random variables (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

•  $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$ 

# $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

*Random variables* (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

- $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$
- $X_{\mathcal{S},1} = r.v.$  describing the support  $\mathcal{S}$  in class  $c_1$

# $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

*Random variables* (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

- $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$
- $X_{\mathcal{S},1} = r.v.$  describing the support  $\mathcal{S}$  in class  $c_1$
- $X_{\bar{\mathcal{S}},0} = r.v.$  describing num. transactions without  $\mathcal{S}$  in class  $c_0$

## $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

*Random variables* (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

- $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$
- $X_{\mathcal{S},1} = r.v.$  describing the support  $\mathcal{S}$  in class  $c_1$
- $X_{\bar{\mathcal{S}},0} = r.v.$  describing num. transactions without  $\mathcal{S}$  in class  $c_0$
- $X_{\bar{\mathcal{S}},1} = r.v.$  describing num. transactions without  $\mathcal{S}$  in class  $c_1$

## $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

*Random variables* (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

- $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$
- $X_{\mathcal{S},1} = r.v.$  describing the support  $\mathcal{S}$  in class  $c_1$
- $X_{\bar{\mathcal{S}},0} = r.v.$  describing num. transactions without  $\mathcal{S}$  in class  $c_0$
- $X_{\bar{S},1} = r.v.$  describing num. transactions without S in class  $c_1$ Test statistic:  $X = \sum_{i \in \{S,\bar{S}\}, j \in \{0,1\}} (X_{i,j} - \mathbb{E}[X_{i,j}])^2 / \mathbb{E}[X_{i,j}]$

## $\chi^2$ test

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

In the old days: "Fisher's exact test is computationally expensive..."

*Random variables* (r.v.) describing outcome under  $H_0$  ( $H_0$  is true)

- $X_{\mathcal{S},0} = r.v.$  describing the support of  $\mathcal{S}$  in class  $c_0$
- $X_{\mathcal{S},1} = r.v.$  describing the support  $\mathcal{S}$  in class  $c_1$
- $X_{\bar{\mathcal{S}},0} = r.v.$  describing num. transactions without  $\mathcal{S}$  in class  $c_0$
- ▶  $X_{\bar{S},1} = r.v.$  describing num. transactions without S in class  $c_1$ Test statistic:  $X = \sum_{i \in \{S,\bar{S}\}, j \in \{0,1\}} (X_{i,j} - \mathbb{E}[X_{i,j}])^2 / \mathbb{E}[X_{i,j}]$ Note:  $\mathbb{E}[X_{i,j}]$  are easily computable 23/101



#### Theorem

When  $n \to +\infty$ ,  $X \to \chi^2$  distribution with 1 degree of freedom



#### Theorem

When  $n \to +\infty$ ,  $X \to \chi^2$  distribution with 1 degree of freedom

# Why is this important? There are *tables* to compute probabilities for the $\chi^2$ distribution



#### Theorem

When  $n \to +\infty$ ,  $X \to \chi^2$  distribution with 1 degree of freedom

# Why is this important? There are *tables* to compute probabilities for the $\chi^2$ distribution

**Note**: the  $\chi^2$  test is the *asymptotic* version of Fisher's exact test.



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

### 25/101



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}}\sim \chi^2$  with 1 degree of freedom





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim \chi^2$  with 1 degree of freedom Test statistic: 2





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim \chi^2$  with 1 degree of freedom Test statistic: 2

$$p$$
-value =  $\Pr(X_{\mathcal{S}} \ge 2) = 0.16$ 

25/101



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

 $X_{\mathcal{S}} \sim \chi^2$  with 1 degree of freedom Test statistic: 2

p-value =  $\Pr(X_{\mathcal{S}} \ge 2) = 0.16$ 

If  $\alpha=0.05\Rightarrow \mathcal{S}$  is not associated with label "professor"

25/101

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Assumption: the row marginals  $(n_0, n_1)$  are fixed



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Assumption: the row marginals  $(n_0, n_1)$  are fixed but the column marginals  $(\sigma(S), n - \sigma(S))$  are not!

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Assumption: the row marginals  $(n_0, n_1)$  are fixed but the column marginals  $(\sigma(S), n - \sigma(S))$  are not!

$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_0] = \pi_0$$
  
$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_1] = \pi_1$$

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Assumption: the row marginals  $(n_0, n_1)$  are fixed but the column marginals  $(\sigma(S), n - \sigma(S))$  are not!

26/101

$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_0] = \pi_0$$
  
$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_1] = \pi_1$$

Null hypothesis  $H_0$ :  $\pi_0 = \pi_1 = \pi$ 

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Assumption: the row marginals  $(n_0, n_1)$  are fixed but the column marginals  $(\sigma(S), n - \sigma(S))$  are not!

$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_0] = \pi_0$$
  
$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_1] = \pi_1$$

Null hypothesis  $H_0$ :  $\pi_0 = \pi_1 = \pi$ 

 $\pi$  is *nuisance parameter*, in the sense that we are not interested in its value, but its value *defines* the distribution of our observations

## Bernard's exact test(2)

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

27/101

$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_0] = \pi_0$$
  
$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_1] = \pi_1$$

Null hypothesis  $H_0$ :  $\pi_0 = \pi_1 = \pi$ 

## Bernard's exact test(2)

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_0] = \pi_0$$
  
$$\Pr[\mathcal{S} \subseteq t_i : \ell(t_i) = c_1] = \pi_1$$

Null hypothesis  $H_0$ :  $\pi_0 = \pi_1 = \pi$ 

How do we compute the *p*-value?

27/101

# Bernard's exact test(3)

## Bernard's exact test(3)

## Test statistic: probability of the contingency table

## Test statistic: probability of the contingency table

Fixed  $\pi$ , the probability of the contingency table is easy to compute.

## Test statistic: probability of the contingency table

Fixed  $\pi$ , the probability of the contingency table is easy to compute.

However, computing the p-value is computationally expensive!

- $\blacktriangleright$   $\pi$  is unknown: consider a grid of values for  $\pi$
- need to enumerate all tables more extreme than the observed table for a given  $\pi$



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

probability of table given 
$$\pi$$
:  $\Pr(4,3|\pi) = \binom{4}{1}\binom{4}{3}(\pi)^4(1-\pi)^4$ 





|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

probability of table given  $\pi$ :  $\Pr(4, 3|\pi) = \binom{4}{1}\binom{4}{3}(\pi)^4(1-\pi)^4$ more extreme tables (given  $\pi$ ):  $T(x, y, \pi) = \{(x', y') : \Pr(x', y' \mid \pi) \leq \Pr(4, 3|\pi)\}$ 



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

29/101

probability of table given  $\pi$ :  $\Pr(4, 3|\pi) = \binom{4}{1}\binom{4}{3}(\pi)^4(1-\pi)^4$ more extreme tables (given  $\pi$ ):  $T(x, y, \pi) = \{(x', y') : \Pr(x', y' \mid \pi) \leq \Pr(4, 3|\pi)\}$ *p*-value:  $\max_{\pi \in (0,1)} \sum_{(x,y) \in T(\sigma(S), \sigma_1(S), \pi)} \Pr(x, y|\pi)$ 



|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 3                           | 1                            | 4      |
| $\ell(t_i) = c_0$ | 1                           | 3                            | 4      |
| Col. m.           | 4                           | 4                            | 8      |

probability of table given  $\pi$ :  $\Pr(4, 3|\pi) = \binom{4}{1}\binom{4}{3}(\pi)^4(1-\pi)^4$ more extreme tables (given  $\pi$ ):  $T(x, y, \pi) = \{(x', y') : \Pr(x', y' \mid \pi) \leq \Pr(4, 3|\pi)\}$ p-value:  $\max_{\pi \in (0,1)} \sum_{(x,y) \in T(\sigma(\mathcal{S}), \sigma_1(\mathcal{S}), \pi)} \Pr(x, y|\pi) = 0.50$  (for  $\pi = 0.4$ ) 29/101

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

**Note:** Barnard's exact test depends on (unknown) nuisance parameter  $\pi$  = probability that pattern S appears in a transaction.



Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

**Note:** Barnard's exact test depends on (unknown) nuisance parameter  $\pi$  = probability that pattern S appears in a transaction.

What about Fisher's exact test?

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

**Note:** Barnard's exact test depends on (unknown) nuisance parameter  $\pi$  = probability that pattern S appears in a transaction.

### What about Fisher's exact test?

Fixing the frequency  $\sigma(S)$  of  $\mathcal{S}\approx$  fixing the probability that  $\mathcal{S}$  appears in a transaction

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

Which one is more appropriate?

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

Which one is more appropriate?

Depends on how the data is collected!

Fisher's test: assumes the frequency  $\sigma(S)$  of the pattern is fixed Barnard's test: does not assume the frequency  $\sigma(S)$  of the pattern is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher's text (computational reasons?)

Pattern mining and statistical hypothesis testing

Previous part: we had **one** pattern S we are interested in Let  $p_S$  be the p-value for S.

Previous part: we had **one** pattern S we are interested in

Let  $p_S$  be the *p*-value for S.

## **Rejection rule**:

Given a statistical level  $\alpha \in (0, 1)$ : reject  $H_0$  iff  $p \leq \alpha \Rightarrow S$  is significant!

Previous part: we had **one** pattern S we are interested in

Let  $p_S$  be the *p*-value for S.

## **Rejection rule**:

Given a statistical level  $\alpha \in (0, 1)$ : reject  $H_0$  iff  $p \leq \alpha \Rightarrow S$  is significant!

 $\Rightarrow$  probability false discovery  $\leqslant \alpha$ 

Previous part: we had  $\mathbf{one}$  pattern S we are interested in

Let  $p_S$  be the *p*-value for S.

## **Rejection rule**:

Given a statistical level  $\alpha \in (0, 1)$ : reject  $H_0$  iff  $p \leq \alpha \Rightarrow S$  is significant!

 $\Rightarrow$  probability false discovery  $\leqslant \alpha$ 

KDD scenario: we consider multiple hypotheses given by our dataset  $\mathcal D$ 

Previous part: we had  $\mathbf{one}$  pattern S we are interested in

Let  $p_S$  be the *p*-value for S.

## **Rejection rule**:

Given a statistical level  $\alpha \in (0, 1)$ : reject  $H_0$  iff  $p \leq \alpha \Rightarrow S$  is significant!

 $\Rightarrow$  probability false discovery  $\leqslant \alpha$ 

KDD scenario: we consider multiple hypotheses given by our dataset  $\mathcal D$ 

What happens if we use the rejection rule above?

### Outline

# **1. Introduction and Theoretical Foundations**

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

### Multiple hypothesis testing

### Let $\mathcal{H}$ be the **set of hypotheses** we want to test, and $m = |\mathcal{H}|$ .

E.g., itemsets from a universe  ${\mathcal I}$  of items:  $m=2^{|{\mathcal I}|}-1$ 

### Multiple hypothesis testing

Let  $\mathcal H$  be the **set of hypotheses** we want to test, and  $m = |\mathcal H|$ . E.g., itemsets from a universe  $\mathcal I$  of items:  $m = 2^{|\mathcal I|} - 1$ Proposition

If we use  $\alpha$  to test the significance of *each* hypothesis in  $\mathcal{H}$ , then

 $\mathbb{E}[\text{number of false discoveries}] = m \times \alpha$ 

### Multiple hypothesis testing

Let  $\mathcal{H}$  be the **set of hypotheses** we want to test, and  $m = |\mathcal{H}|$ . E.g., itemsets from a universe  $\mathcal{I}$  of items:  $m = 2^{|\mathcal{I}|} - 1$ Proposition If we use  $\alpha$  to test the significance of *each* hypothesis in  $\mathcal{H}$ , then

 $\mathbb{E}[\text{number of$ *false discoveries}] = m \times \alpha* 

Typical  $\alpha$  to test a *single* hypothesis:  $\alpha = 0.05$  or 0.01  $\Rightarrow$  many false discoveries in expectation  $\Rightarrow$  at least one with high probability! We want guarantees on the probability of any false discovery

34/101

Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery Family-Wise Error Rate (FWER):

 $\Pr[>0 \text{ false discoveries}]$ 

We want  $FWER \leq \alpha$ , for some  $\alpha \in (0, 1)$ .

How to achieve this goal?

Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery Family-Wise Error Rate (FWER):

 $\Pr[>0 \text{ false discoveries}]$ 

We want  $FWER \leq \alpha$ , for some  $\alpha \in (0, 1)$ .

How to achieve this goal?

Bonferroni correction

▶ . . .

Bonferroni-Holm procedure



 $\mathcal{H}$ : set of hypotheses (*patterns*) to test,  $m = |\mathcal{H}|$ . For  $\mathcal{S} \in \mathcal{H}$ , let  $H_{\mathcal{S},0}$  be the corresponding *null hypothesis*.

 $\mathcal{H}$ : set of hypotheses (*patterns*) to test,  $m = |\mathcal{H}|$ . For  $S \in \mathcal{H}$ , let  $H_{S,0}$  be the corresponding *null hypothesis*. **Rejection rule**: Given a *statistical level*  $\alpha \in (0, 1)$ : **reject**  $H_{S,0}$  (i.e., flag S as significant) iff  $p \leq \frac{\alpha}{m}$ 

 $\begin{array}{l} \mathcal{H}: \mbox{ set of hypotheses } (\textit{patterns}) \mbox{ to test, } m = |\mathcal{H}|. \\ \mbox{For } \mathcal{S} \in \mathcal{H}, \mbox{ let } H_{\mathcal{S},0} \mbox{ be the corresponding null hypothesis.} \\ \mbox{ Rejection rule: Given a statistical level } \alpha \in (0,1): \\ \mbox{ reject } H_{S,0} \mbox{ (i.e., flag } \mathcal{S} \mbox{ as significant}) \mbox{ iff } p \leqslant \frac{\alpha}{m} \\ \mbox{ Why does this approach controls the FWER?} \end{array}$ 

• for each  $\mathcal{S}$ ,  $\Pr[\mathcal{S} \text{ is a false discovery }] \leqslant \frac{\alpha}{m}$ 

 $\begin{array}{l} \mathcal{H}: \text{ set of hypotheses } (\textit{patterns}) \text{ to test, } m = |\mathcal{H}|. \\ \text{For } \mathcal{S} \in \mathcal{H}, \text{ let } H_{\mathcal{S},0} \text{ be the corresponding null hypothesis.} \\ \textbf{Rejection rule}: \text{ Given a statistical level } \alpha \in (0,1): \\ \textbf{reject } H_{S,0} \text{ (i.e., flag } \mathcal{S} \text{ as significant) iff } p \leqslant \frac{\alpha}{m} \\ \text{Why does this approach controls the FWER?} \end{array}$ 

- for each S,  $\Pr[S$  is a false discovery  $] \leq \frac{\alpha}{m}$
- union bound on m events:  $\Pr[>0$  false discoveries ]  $\leq \sum_{S \in \mathcal{H}} \Pr[S \text{ is false discovery }] \leq |\mathcal{H}|_{\overline{m}}^{\alpha} \leq \alpha$

Choosing hypotheses before testing?

Alphabet of items  $\mathcal{I}$  with  $|\mathcal{I}| = 6000$ Dataset  $\mathcal{D}$  with 10 transactions with label  $c_1$ , 10 with label  $c_0$ Hypotheses  $\mathcal{H} = \mathcal{I}$ 

"large m, small data: nothing will be flagged as significant!"

Choosing hypotheses before testing?

Alphabet of items  $\mathcal{I}$  with  $|\mathcal{I}| = 6000$ Dataset  $\mathcal{D}$  with 10 transactions with label  $c_1$ , 10 with label  $c_0$ Hypotheses  $\mathcal{H} = \mathcal{I}$ 

- "large m, small data: nothing will be flagged as significant!"
- "let's select some hypotheses first, and then do the testing...": find pattern S<sup>\*</sup> = arg max<sub>S∈H</sub>(σ<sub>1</sub>(S) − σ<sub>0</sub>(S)).
- "I am going to test only  $S^*$ !" E.g.,  $\sigma_1(S^*) = 10, \sigma_0(S^*) = 0$ . Fisher's test *p*-value = 0.0001

Choosing hypotheses before testing?

Alphabet of items  $\mathcal{I}$  with  $|\mathcal{I}| = 6000$ Dataset  $\mathcal{D}$  with 10 transactions with label  $c_1$ , 10 with label  $c_0$ Hypotheses  $\mathcal{H} = \mathcal{I}$ 

- "large m, small data: nothing will be flagged as significant!"
- "let's select some hypotheses first, and then do the testing...": find pattern S<sup>\*</sup> = arg max<sub>S∈H</sub>(σ<sub>1</sub>(S) − σ<sub>0</sub>(S)).
- "I am going to test only S\*!"
  E.g., σ<sub>1</sub>(S\*) = 10, σ<sub>0</sub>(S\*) = 0. Fisher's test p-value = 0.0001
  "S\* is very significant!!!" ☺





## "S is very significant!!!" ☺ BUT IT IS NOT!

Assume that  $\ensuremath{\mathcal{D}}$  is generated as follows:

- Each item/pattern S will appear exactly 10 times
- For i = 1, ..., 10, place S in the *i*-th transaction labeled  $c_0$  with probability 1/2, and the *i*-th transaction labeled  $c_1$  otherwise

No pattern  ${\cal S}$  is associated with class labels!

## "S is very significant!!!" ☺ BUT IT IS NOT!

Assume that  $\ensuremath{\mathcal{D}}$  is generated as follows:

- Each item/pattern S will appear exactly 10 times
- For i = 1, ..., 10, place S in the *i*-th transaction labeled  $c_0$  with probability 1/2, and the *i*-th transaction labeled  $c_1$  otherwise

No pattern  ${\cal S}$  is associated with class labels!

For a given  $\mathcal{S}$ ,  $\Pr(\sigma_1(\mathcal{S}) = 10 \text{ and } \sigma_0(\mathcal{S}) = 0) = (1/2)^{10} = 1/1024$ 

## "S is very significant!!!" ☺ BUT IT IS NOT!

Assume that  $\mathcal{D}$  is generated as follows:

- Each item/pattern S will appear exactly 10 times
- For i = 1, ..., 10, place S in the *i*-th transaction labeled  $c_0$  with probability 1/2, and the *i*-th transaction labeled  $c_1$  otherwise

No pattern  $\mathcal{S}$  is associated with class labels!

For a given S,  $Pr(\sigma_1(S) = 10 \text{ and } \sigma_0(S) = 0) = (1/2)^{10} = 1/1024$ 

In expectation,  $\approx 5$  patterns with  $\sigma_1(S) = 10$  and  $\sigma_0(S) = 0$ . they are *all* false discoveries!

We selected the hypothesis to test on the basis of its support  $\sigma_1(\mathcal{S})$ 

We selected the hypothesis to test on the basis of its support  $\sigma_1(S)$  $\sigma_1(S) = 10 - \sigma_0(S)$  is clearly related to the *p*-value

We selected the hypothesis to test on the basis of its support  $\sigma_1(S)$  $\sigma_1(S) = 10 - \sigma_0(S)$  is clearly related to the *p*-value

We have essentially looked at the *p*-values of all hypotheses and then acted as if we did not!

We selected the hypothesis to test on the basis of its support  $\sigma_1(S)$  $\sigma_1(S) = 10 - \sigma_0(S)$  is clearly related to the *p*-value

We have essentially looked at the *p*-values of all hypotheses and then acted as if we did not!



### Outline

# **1. Introduction and Theoretical Foundations**

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

A smaller  $\mathcal{H}$  will lead to a higher corrected significance threshold  $\alpha/|\mathcal{H}|$ , thus may lead to higher power.

A smaller  $\mathcal{H}$  will lead to a higher corrected significance threshold  $\alpha/|\mathcal{H}|$ , thus may lead to higher power.

QUESTION: can we shrink  $\mathcal{H}$  a posteriori?

I.e., Can we use  $\mathcal{D}$  to select  $\mathcal{H}' \subsetneq \mathcal{H}$ 

such that  $\mathcal{H} \setminus \mathcal{H}'$  only contains *non-significant* hypotheses?

A smaller  $\mathcal{H}$  will lead to a higher corrected significance threshold  $\alpha/|\mathcal{H}|$ , thus may lead to higher power.

QUESTION: can we shrink  $\mathcal{H}$  a posteriori?

I.e., Can we use  $\mathcal{D}$  to select  $\mathcal{H}' \subsetneq \mathcal{H}$ such that  $\mathcal{H} \setminus \mathcal{H}'$  only contains *non-significant* hypotheses?

ANSWER: No...and yes! 😀

### How not to select hypotheses

The one thing you *must remember* from this tutorial!

Do not do this:

### How not to select hypotheses

The one thing you *must remember* from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using  $\mathcal{D}$ .

2) Use the test results to select which hypotheses to include in  $\mathcal{H}'$ .

3) Use Bonferroni correction on  $\mathcal{H}'$  to bound the FWER (for  $\mathcal{H}$ )

### How not to select hypotheses

The one thing you *must remember* from this tutorial!

Do not do this:

- 1) Perform each individual test for each hypothesis using  $\mathcal{D}$ .
- 2) Use the test results to select which hypotheses to include in  $\mathcal{H}'$ .
- 3) Use Bonferroni correction on  $\mathcal{H}'$  to bound the FWER (for  $\mathcal{H}$ )

Selecting  $\mathcal{H}'$  must be done without performing the tests on  $\mathcal{D}$ .

### The holdout approach

1. Partition  $\mathcal{D}$  into  $\mathcal{D}_1$  and  $\mathcal{D}_2$ :  $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$  and  $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$ .

2. Apply some selection procedure to  $\mathcal{D}_1$  to select  $\mathcal{H}'$  (it may include performing the tests on  $\mathcal{D}_1$ ).

3) Perform the individual test for each hypothesis in  $\mathcal{H}'$  on  $\mathcal{D}_2$ , using the Bonferroni correction on  $\mathcal{H}'$ .

### The holdout approach

1. Partition  $\mathcal{D}$  into  $\mathcal{D}_1$  and  $\mathcal{D}_2$ :  $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$  and  $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$ .

- 2. Apply some selection procedure to  $\mathcal{D}_1$  to select  $\mathcal{H}'$  (it may include performing the tests on  $\mathcal{D}_1$ ).
- 3) Perform the individual test for each hypothesis in  $\mathcal{H}'$  on  $\mathcal{D}_2$ , using the Bonferroni correction on  $\mathcal{H}'$ .

Splitting  $\mathcal{D}$  is *similar* to using a training set and a test set.

An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007



### When holdout works and why

Holdout can be used *only* when  $\mathcal{D}$  can be partitioned into  $\mathcal{D}_1$  and  $\mathcal{D}_2$  s.t.  $\mathcal{D}_1$  and  $\mathcal{D}_2$  are *samples from the null distribution*.

#### When holdout works and why

Holdout can be used *only* when  $\mathcal{D}$  can be partitioned into  $\mathcal{D}_1$  and  $\mathcal{D}_2$  s.t.  $\mathcal{D}_1$  and  $\mathcal{D}_2$  are *samples from the null distribution*.

Such partitioning may not exist or be known.

#### When holdout works and why

Holdout can be used *only* when  $\mathcal{D}$  can be partitioned into  $\mathcal{D}_1$  and  $\mathcal{D}_2$  s.t.  $\mathcal{D}_1$  and  $\mathcal{D}_2$  are *samples from the null distribution*.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting induced subgraphs is a sample from the original distribution: what do you do with edges crossing the two sets?

#### How selective shall we be?

Let  $\mathcal{Z}_{\alpha} \subseteq \mathcal{H}$  be the set of  $\alpha$ -significant hypotheses.

When selecting  $\mathcal{H}'$ , we may get rid of some  $\alpha$ -significant ones:  $\mathcal{Z}_{\alpha} \cap (\mathcal{H} \setminus \mathcal{H}') \neq \emptyset$ .

Does the power increases because the corrected significance threshold increases?

#### How selective shall we be?

Let  $\mathcal{Z}_{\alpha} \subseteq \mathcal{H}$  be the set of  $\alpha$ -significant hypotheses.

When selecting  $\mathcal{H}'$ , we may get rid of some  $\alpha$ -significant ones:  $\mathcal{Z}_{\alpha} \cap (\mathcal{H} \setminus \mathcal{H}') \neq \emptyset$ .

Does the power increases because the corrected significance threshold increases? **Unclear!** 

One can build examples where power  $\uparrow$ ,  $\downarrow$ , or =.

Being more or less selective in choosing  $\mathcal{H}'$  has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout *may* remove  $\alpha$ -significant hypotheses from  $\mathcal{H}$ .

OTOH, holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not  $\alpha$ -significant. Being more or less selective in choosing  $\mathcal{H}'$  has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout *may* remove  $\alpha$ -significant hypotheses from  $\mathcal{H}$ .

OTOH, holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not  $\alpha$ -significant.

Coming up: how to discard *only* non- $\alpha$ -significant hypotheses.

### Outline

# **1. Introduction and Theoretical Foundations**

- 1.1 Introduction to Significant Pattern Mining
- 1.2 Statistical Hypothesis Testing
- 1.3 Fundamental Tests
- 1.4 Multiple Hypothesis Testing
- 1.5 Selecting Hypothesis
- 1.6 Hypotheses Testability
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

The statistic of Fisher's exact test is **discrete** 

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

**Example** Consider a dataset with  $n_0 = 5$ ,  $n_1 = 10$ ,  $\sigma(S) = 5$  ( $\Rightarrow n = 15, n - \sigma(S) = 10$ ).

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

**Example** Consider a dataset with  $n_0 = 5$ ,  $n_1 = 10$ ,  $\sigma(S) = 5$  ( $\Rightarrow n = 15, n - \sigma(S) = 10$ ).

Smallest p-value for S?

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

**Example** Consider a dataset with  $n_0 = 5$ ,  $n_1 = 10$ ,  $\sigma(S) = 5$  ( $\Rightarrow n = 15, n - \sigma(S) = 10$ ).

Smallest *p*-value for *S*? When  $\sigma_1(S) = 5$ 

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

**Example** Consider a dataset with  $n_0 = 5$ ,  $n_1 = 10$ ,  $\sigma(S) = 5$  ( $\Rightarrow n = 15, n - \sigma(S) = 10$ ).

Smallest *p*-value for *S*? When  $\sigma_1(S) = 5$ 

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 5                           | 0                            | 5      |
| $\ell(t_i) = c_0$ | 0                           | 10                           | 10     |
| Col. m.           | 5                           | 10                           | 15     |

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

**Example** Consider a dataset with  $n_0 = 5$ ,  $n_1 = 10$ ,  $\sigma(S) = 5$  ( $\Rightarrow n = 15, n - \sigma(S) = 10$ ).

Smallest *p*-value for *S*? When  $\sigma_1(S) = 5$ 

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$ | Row m. |
|-------------------|-----------------------------|------------------------------|--------|
| $\ell(t_i) = c_1$ | 5                           | 0                            | 5      |
| $\ell(t_i) = c_0$ | 0                           | 10                           | 10     |
| Col. m.           | 5                           | 10                           | 15     |

minimum attainable p-value =  $3 \times 10^{-4}$ 

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Let  $p^F(\sigma(\mathcal{S}), x)$  be the statistic for pattern  $\mathcal{S}$  with support  $\sigma(\mathcal{S})$ assuming  $\sigma_1(\mathcal{S}) = x$ .

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Let  $p^F(\sigma(\mathcal{S}), x)$  be the statistic for pattern  $\mathcal{S}$  with support  $\sigma(\mathcal{S})$ assuming  $\sigma_1(\mathcal{S}) = x$ .

It must be  $\max\{0, n_1 - (n - \sigma(\mathcal{S}))\} \leq x \leq \min\{\sigma(\mathcal{S}), n_1\}$ 

The statistic of Fisher's exact test is **discrete**  $\Rightarrow$  there is a **minimum attainable** *p*-value for a pattern S.

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Let  $p^F(\sigma(\mathcal{S}), x)$  be the statistic for pattern  $\mathcal{S}$  with support  $\sigma(\mathcal{S})$ assuming  $\sigma_1(\mathcal{S}) = x$ .

It must be  $\max\{0, n_1 - (n - \sigma(S))\} \leq x \leq \min\{\sigma(S), n_1\}$  $\Rightarrow$  the range of  $p^F(\sigma(S), x)$  depends only on  $\sigma(S)$  ( $n, n_1$  are fixed)

Then the minimum attainable p-value for S is:

$$\psi(\sigma(\mathcal{S})) = \min_{\max\{0, n_1 - (n - \sigma(\mathcal{S}))\} \leqslant x \leqslant \min\{\sigma(\mathcal{S}), n_1\}} p^F(\sigma(\mathcal{S}), x)$$

Then the minimum attainable p-value for S is:

$$\psi(\sigma(\mathcal{S})) = \min_{\max\{0, n_1 - (n - \sigma(\mathcal{S}))\} \leqslant x \leqslant \min\{\sigma(\mathcal{S}), n_1\}} p^F(\sigma(\mathcal{S}), x)$$

Tarone's result: when testing each hypothesis with significance level  $\delta$ , then the hypotheses that will certainly have *p*-value greater than  $\delta$  do not need to be counted when using Bonferroni's correction!

# ${\mathcal S}$ cannot be significant with significance level $\delta$ if $\psi(\sigma({\mathcal S})) > \delta$

 $\mathcal{S}$  cannot be significant with significance level  $\delta$  if  $\psi(\sigma(\mathcal{S})) > \delta \Rightarrow \mathcal{S}$  is **untestable**.

 $\mathcal{S}$  cannot be significant with significance level  $\delta$  if  $\psi(\sigma(\mathcal{S})) > \delta \Rightarrow \mathcal{S}$  is **untestable**.

Set of **testable hypotheses** (for significance level  $\delta$ ):

$$\mathcal{T}(\delta) = \{ \mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta \}$$

All the others do not really matter, and should not be counted when applying the Bonferroni correction to control for the FWER.



$$S = \{$$
orange, tomato, broccoli $\}$ 

#### 53/101



$$\begin{split} \mathcal{S} &= \{ \text{orange, tomato, broccoli} \} \\ \text{minimum attainable } p\text{-value} \\ \psi(\sigma(\mathcal{S})) &= \min_{0 \leqslant x \leqslant \min\{\sigma(\mathcal{S}), n_1\}} \{ p^F(\sigma(\mathcal{S}), x) \} \end{split}$$



$$\begin{split} \mathcal{S} &= \{\text{orange, tomato, broccoli}\}\\ \text{minimum attainable $p$-value}\\ \psi(\sigma(\mathcal{S})) &= \min_{0 \leqslant x \leqslant \min\{\sigma(\mathcal{S}), n_1\}} \{p^F(\sigma(\mathcal{S}), x)\}\\ \text{obtained for $x = 4$: $\psi(4) = 0.014$.} \end{split}$$

#### 53/101



$$\begin{split} \mathcal{S} &= \{\text{orange, tomato, broccoli}\}\\ \text{minimum attainable $p$-value}\\ \psi(\sigma(\mathcal{S})) &= \min_{0 \leqslant x \leqslant \min\{\sigma(\mathcal{S}), n_1\}} \{p^F(\sigma(\mathcal{S}), x)\}\\ \text{obtained for $x = 4$: $\psi(4) = 0.014$.} \end{split}$$

 $\Rightarrow$  if the significance level used to test each hypothesis is  $\delta = 0.01$ , you do not need to count S among the hypotheses!

Set of **testable hypotheses**:

$$\mathcal{T}(\delta) = \{ \mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta \}$$

#### Set of testable hypotheses:

$$\mathcal{T}(\delta) = \{ \mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta \}$$

#### Rejection rule:

Given a statistical level  $\alpha \in (0, 1)$ , let  $\delta \leq \alpha / |\mathcal{T}(\delta)|$ : reject  $H_0$  iff  $p \leq \delta \Rightarrow S$  is significant!

#### Set of testable hypotheses:

$$\mathcal{T}(\delta) = \{ \mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta \}$$

#### Rejection rule:

Given a statistical level  $\alpha \in (0, 1)$ , let  $\delta \leq \alpha / |\mathcal{T}(\delta)|$ : reject  $H_0$  iff  $p \leq \delta \Rightarrow S$  is significant!

Theorem The FWER is  $\leq \alpha$ .

#### Set of testable hypotheses:

$$\mathcal{T}(\delta) = \{ \mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta \}$$

#### Rejection rule:

Given a statistical level  $\alpha \in (0, 1)$ , let  $\delta \leq \alpha / |\mathcal{T}(\delta)|$ : reject  $H_0$  iff  $p \leq \delta \Rightarrow S$  is significant!

#### Theorem The FWER is $\leq \alpha$ .

Idea: find  $\delta^* = \max\{\delta : \delta \leq \alpha/|\mathcal{T}(\delta)|\}!$ 

Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone's approach to selecting hypotheses

Minimal attainable *p*-value

Anything else =)

Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone's approach to selecting hypotheses

Minimal attainable p-value

Anything else =)

Let's take a 5–10 minutes break.

#### Outline

# Introduction and Theoretical Foundations Mining Statistically-Sound Patterns

- 2.1 LAMP: Tarone's method for Significant Pattern Mining
- 2.2 SPuManTE: relaxing conditional assumptions
- 2.3 Permutation Testing
- 2.4 WY Permutation Testing
- 3. Recent developments and advanced topics
- 4. Final Remarks

#### Selecting testable patterns

# Minimum attainable *p*-value $\psi(\sigma(S))$ of a pattern S: select patterns to test from $\mathcal{H}$ .

Minimum attainable *p*-value  $\psi(\sigma(S))$  of a pattern S: select patterns to test from  $\mathcal{H}$ .

Naïve approach: compute  $\psi(\sigma(S))$  for all  $S \in \mathcal{H}$ , find  $\delta^*$ 



Minimum attainable *p*-value  $\psi(\sigma(S))$  of a pattern S: select patterns to test from  $\mathcal{H}$ .

Naïve approach: compute  $\psi(\sigma(\mathcal{S}))$  for all  $\mathcal{S} \in \mathcal{H}$ , find  $\delta^*$ 

Not possible to enumerate all  $\mathcal{S} \in \mathcal{H}$ ...

Minimum attainable *p*-value  $\psi(\sigma(S))$  of a pattern S is a function of its support  $\sigma(S)$  in the data.

Low (and very high) support  $\sigma(\mathcal{S}) \rightarrow \text{large } \psi(\sigma(\mathcal{S}))$ 

<sup>1</sup>A. Terada, et. al. *Statistical significance of combinatorial regulations*. PNAS, 2013.

Minimum attainable *p*-value  $\psi(\sigma(S))$  of a pattern S is a function of its support  $\sigma(S)$  in the data.



<sup>&</sup>lt;sup>1</sup>A. Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.

Minimum attainable *p*-value  $\psi(\sigma(S))$  of a pattern S is a function of its support  $\sigma(S)$  in the data.



**Intuition** of LAMP<sup>1</sup>: connection betw. *testable* and *frequent* patterns!

58/101

<sup>1</sup>A. Terada, et. al. *Statistical significance of combinatorial regulations.* PNAS, 2013.

### Frequent Pattern Mining

# **Frequent Pattern Mining:** given $\mathcal{D}$ , compute the *set of frequent patterns* $FP(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$ w.r.t. support $\theta$ , that is

$$FP(\mathcal{D}, \mathcal{H}, \theta) := \{ \mathcal{S} \in \mathcal{H} : \sigma(\mathcal{S}) \ge \theta \}.$$

### Frequent Pattern Mining

**Frequent Pattern Mining:** given  $\mathcal{D}$ , compute the *set of frequent patterns*  $FP(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$  w.r.t. support  $\theta$ , that is

$$FP(\mathcal{D}, \mathcal{H}, \theta) := \{ \mathcal{S} \in \mathcal{H} : \sigma(\mathcal{S}) \ge \theta \}.$$

Typical approach: Explore the *search tree* of  $\mathcal{H}$ , *pruning* subtrees with support  $< \theta$  (monotonicity of support)



## Frequent Pattern Mining

## Monotonicity of patterns' support

Theorem

Let S be an itemset. Then it holds  $\sigma(S') \leq \sigma(S)$  for all  $S' \supseteq S$ .



Valid for many other patterns (e.g., subgraphs, sequential patterns, subgroups, ...)

LAMP: monotone minimum achievable *p*-value function  $\hat{\psi}(\cdot)$ :

$$\hat{\psi}(x) = \begin{cases} \psi(x) &, \text{ if } x \leqslant n_1 \\ \psi(n_1) &, \text{ othw.} \end{cases}$$



We obtain the equivalence:

$$\mathcal{T}(\hat{\psi}(\theta)) = FP(\mathcal{D}, \mathcal{H}, \theta) = \{ \mathcal{S} \in \mathcal{H} : \sigma(\mathcal{S}) \ge \theta \}.$$

Thus:

$$|\mathcal{T}(\hat{\psi}(\theta))| = |FP(\mathcal{D}, \mathcal{H}, \theta)|.$$

We can use  $|FP(\mathcal{D}, \mathcal{H}, \theta)|$  to find

$$\delta^* = \max\{\delta : \delta | \mathcal{T}(\delta) | \leq \alpha\}.$$

LAMP algorithm: compute  $\delta^* = \max\{\delta : \delta | \mathcal{T}(\delta) | \leq \alpha\}$ enumerating Frequent Itemsets.

Performs multiple Frequent Pattern Mining instances (decreasing values of  $\theta$ ) to evaluate  $|FP(\mathcal{D}, \mathcal{H}, \theta)|$ .

Find minimum heta such that it holds

 $\alpha/|FP(\mathcal{D},\mathcal{H},\theta)| \ge \hat{\psi}(\theta)$ 

 $\theta_1$  $\{\Delta\}$   $\langle \Box \rangle$  $\{\mathbf{O}\}$  $(O\Delta)$   $(O\Box)$  (Od)  $\cdots$   $(\Delta \Box)$   $(\Delta d)$   $\cdots$ . . .  $(O \Delta \Box \Delta)$ . . .  $\{ \land \}$  $\theta_{2}$  $\{\bigcirc\}$  $\{\Box\}$  $(O\Delta)$   $(O\Box)$  (Od)  $(\Box d)$   $(\Delta d)$ (O∆□☆ . . . (imgs. from LAMP paper) 63/101

## LAMP: Experimental Results

(imgs. from LAMP)



Estimated FWER ( $\alpha = 0.05$ ) of LAMP vs Bonferroni correction.



For  $\theta_2$  we count again all patterns already counted for  $\theta_1 \ge \theta_2!$ 





Is it possible to explore patterns only once?

SupportIncrease<sup>2</sup>: LAMP with only *one* Depth-First (DF) exploration of  $\mathcal{H}$ .



<sup>2</sup>Minato, S. I., et al. A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. ECML-PKDD 2014.

## Mining Significant Subgraphs<sup>4</sup>



 <sup>3</sup>F. Llinares-López, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB'18 Tutorial.
 <sup>4</sup>M. Sugiyama, F. Llinares-López, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with multiple testing correction. ICDM 2015.
 67/101

## Outline

# Introduction and Theoretical Foundations Mining Statistically-Sound Patterns

- 2.1 LAMP: Tarone's method for Significant Pattern Mining
- 2.2 SPuManTE: relaxing conditional assumptions
- 2.3 Permutation Testing
- 2.4 WY Permutation Testing
- 3. Recent developments and advanced topics
- 4. Final Remarks

## Relaxing conditional assumptions

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

(gray = fixed, yellow = random)

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are *fixed* by design of the experiment.

## Relaxing conditional assumptions

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

$$(gray = fixed, yellow = random)$$

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are *fixed* by design of the experiment.

In many cases, only  $n_0, n_1$ , and n are fixed, while  $\sigma(S)$  depends on the data  $\rightarrow$  **Unconditional Test!** 

## Relaxing conditional assumptions

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

$$(gray = fixed, yellow = random)$$

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are *fixed* by design of the experiment.

In many cases, only  $n_0, n_1$ , and n are fixed, while  $\sigma(S)$  depends on the data  $\rightarrow$  **Unconditional Test!** 

Not used in practice, mainly for computational reasons...

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

(gray = fixed, yellow = random)

Nuisance variables:  $\pi_{S,j} = P("S \subseteq t_i" \mid "\ell(t_i) = c_j")$ , NH:  $\pi_{S,0} = \pi_{S,1} = \pi_S = P("S \subseteq t_i")$ .

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \nsubseteq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

(gray = fixed, yellow = random)

Nuisance variables: 
$$\pi_{S,j} = P("S \subseteq t_i" \mid "\ell(t_i) = c_j")$$
,  
NH:  $\pi_{S,0} = \pi_{S,1} = \pi_S = P("S \subseteq t_i")$ .  
Let  $\mathcal{C}_S$  = observed contingency table for  $S$ .

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

(gray = fixed, yellow = random)

Nuisance variables:  $\pi_{\mathcal{S},i} = P("\mathcal{S} \subseteq t_i" \mid "\ell(t_i) = c_i"),$ NH:  $\pi_{\mathcal{S},0} = \pi_{\mathcal{S},1} = \pi_{\mathcal{S}} = P("\mathcal{S} \subseteq t_i").$ Let  $C_{\mathcal{S}}$  = observed contingency table for  $\mathcal{S}$ .  $P(\mathcal{C} \mid \pi) = \text{prob. of a table } \mathcal{C} \text{ assuming NH and } \pi_{\mathcal{S}} = \pi$  $T(\mathcal{C}_{\mathcal{S}},\pi) = \{ \text{more extreme cont. tables of } \mathcal{C}_{\mathcal{S}} \}$  $\phi(\mathcal{C}_{\mathcal{S}},\pi) = \sum P(\mathcal{C} \mid \pi)$  $\mathcal{C} \in T(\mathcal{C}_{\mathcal{S}},\pi)$ *p*-value:  $p_{\mathcal{S}} = \max_{\pi \in [0,1]} \{ \phi(\mathcal{C}_{\mathcal{S}}, \pi) \}$ 

$$\begin{array}{c|c} \mathcal{S} \subseteq t_i & \mathcal{S} \nsubseteq t_i & \mathsf{Row} \ \mathsf{m}. \\ \hline \ell(t_i) = c_1 & \sigma_1(\mathcal{S}) & n_1 - \sigma_1(\mathcal{S}) & n_1 \\ \hline \ell(t_i) = c_0 & \sigma_0(\mathcal{S}) & n_0 - \sigma_0(\mathcal{S}) & n_0 \\ \hline \mathsf{Col.} \ \mathsf{m}. & \sigma(\mathcal{S}) & n - \sigma(\mathcal{S}) & n \end{array}$$

(gray = fixed, yellow = random)

Nuisance variables: 
$$\pi_{S,j} = P("S \subseteq t_i" \mid "\ell(t_i) = c_j")$$
,  
NH:  $\pi_{S,0} = \pi_{S,1} = \pi_S = P("S \subseteq t_i")$ .  
Let  $C_S$  = observed contingency table for  $S$ .  
 $P(C \mid \pi) = \text{prob. of a table } C$  assuming NH and  $\pi_S = \pi$   
 $T(C_S, \pi) = \{\text{more extreme cont. tables of } C_S\}$   
 $\phi(C_S, \pi) = \sum_{C \in T(C_S, \pi)} P(C \mid \pi)$   
 $p$ -value:  $p_S = \max_{\pi \in [0,1]} \{\phi(C_S, \pi)\} \rightarrow \text{hard to compute!}$ 

Efficient Unconditional Testing: SPuManTE<sup>5</sup>

1) Computes confidence intervals  $C_j(\mathcal{S})$  for  $\pi_{\mathcal{S},j}$ 

<sup>&</sup>lt;sup>5</sup>L. Pellegrina, M. Riondato, and F. Vandin. *"SPuManTE: Significant Pattern Mining with Unconditional Testing"*. KDD 2019.

Efficient Unconditional Testing: SPuManTE<sup>6</sup>

1) Computes confidence intervals  $C_j(S)$  for  $\pi_{S,j}$ Compute a probabilistic (high prob.) upper bound to

$$\sup_{\mathcal{S}\in\mathcal{H}, j\in\{0,1\}} \left| \pi_{\mathcal{S},j} - \frac{\sigma_j(\mathcal{S})}{n_j} \right|$$

(note:  $\sigma_j(S)/n_j$  is observed from D,  $\pi_{S,j}$  is unknown)

How? Upper bound<sup>5</sup> to Rademacher Complexity of  $\mathcal{H}$ .

<sup>&</sup>lt;sup>5</sup>M. Riondato and E. Upfal. *Mining frequent itemsets through progressive sampling with Rademacher averages.* KDD 2015.

<sup>&</sup>lt;sup>6</sup>L. Pellegrina, M. Riondato, and F. Vandin. *"SPuManTE: Significant Pattern Mining with Unconditional Testing"*. KDD 2019.

Efficient Unconditional Testing: SPuManTE

## 2) p-value $p_S$ according to confidence intervals:

$$p_{S} = \begin{cases} 0 & \text{, if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S}) = \emptyset \\ \max\{\phi(\mathcal{C}_{\mathcal{S}}, \pi), \pi \in C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})\} & \text{, othw.} \end{cases}$$

Flag S as significant if  $p_S \leq \delta$ .

### Efficient Unconditional Testing: SPuManTE

p-value  $p_S$  according to confidence intervals:

$$p_{S} = \begin{cases} 0 & , \text{ if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S}) = \emptyset \\ \max\{\phi(\mathcal{C}_{\mathcal{S}}, \pi), \pi \in C(\mathcal{S})\} & , \text{ othw.} \end{cases}$$

p-value  $p_S$  is still expensive to compute in second case!

<sup>&</sup>lt;sup>7</sup>L. Pellegrina, M. Riondato, and F. Vandin. *"SPuManTE: Significant Pattern Mining with Unconditional Testing"*. KDD 2019.

## Efficient Unconditional Testing: SPuManTE

p-value  $p_S$  according to confidence intervals:

$$p_{S} = \begin{cases} 0 & , \text{ if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S}) = \emptyset \\ \max\{\phi(\mathcal{C}_{\mathcal{S}}, \pi), \pi \in C(\mathcal{S})\} & , \text{ othw.} \end{cases}$$

p-value  $p_S$  is still expensive to compute in second case!

3) Upper and Lower bounds to  $p_S$ , and efficient algorithm for computation of  $\phi(\cdot)$ 

More in the paper<sup>7</sup> :)

<sup>&</sup>lt;sup>7</sup>L. Pellegrina, M. Riondato, and F. Vandin. *"SPuManTE: Significant Pattern Mining with Unconditional Testing"*. KDD 2019.

## Outline

# Introduction and Theoretical Foundations Mining Statistically-Sound Patterns

- 2.1 LAMP: Tarone's method for Significant Pattern Mining
- 2.2 SPuManTE: relaxing conditional assumptions

## 2.3 Permutation Testing

- 2.4 WY Permutation Testing
- 3. Recent developments and advanced topics
- 4. Final Remarks

## **Main idea**: *estimate* the null distribution by *randomly perturbing* the observed data.

**Main idea**: *estimate* the null distribution by *randomly perturbing* the observed data.

**Pro**: takes advantage of the dependence structure of the hypothesis

**Cons**: computationally expensive, assumptions

 $\mathcal{D}_0$ : observed dataset from some generative process  $\mathcal{G}$ .

E.g., a transactional dataset

 $\mathcal{D}_0{:}$  observed dataset from some generative process  $\mathcal{G}.$ 

E.g., a transactional dataset

 $T_0 = \mathcal{A}(\mathcal{D}_0) \in \mathbb{R}$ : output of analysis algorithm  $\mathcal{A}$  on  $\mathcal{D}_0$ 

E.g., the *number* of frequent itemsets w.r.t. min. freq. thresh.  $\theta$ 

 $\mathcal{D}_0$ : observed dataset from some generative process  $\mathcal{G}$ .

E.g., a transactional dataset

 $T_0 = \mathcal{A}(\mathcal{D}_0) \in \mathbb{R}$ : output of analysis algorithm  $\mathcal{A}$  on  $\mathcal{D}_0$ 

E.g., the *number* of frequent itemsets w.r.t. min. freq. thresh.  $\boldsymbol{\theta}$ 

- $\mathbf{P}:$  a set of properties of  $\mathcal{D}_0$  satisfied by all  $\mathcal{D}\in\mathcal{G}$
- E.g., the rows and columns *totals*

 $\mathcal{D}_0$ : observed dataset from some generative process  $\mathcal{G}$ .

E.g., a transactional dataset

 $T_0 = \mathcal{A}(\mathcal{D}_0) \in \mathbb{R}$ : output of analysis algorithm  $\mathcal{A}$  on  $\mathcal{D}_0$ 

E.g., the *number* of frequent itemsets w.r.t. min. freq. thresh.  $\boldsymbol{\theta}$ 

 $\mathbf{P}:$  a set of properties of  $\mathcal{D}_0$  satisfied by all  $\mathcal{D}\in\mathcal{G}$ 

E.g., the rows and columns *totals* 

QUESTION: Is  $T_0$  surprising? Or just a "consequence" of **P**?

## Null hypothesis

## Null hypothesis $H_0$ : $T_0$ is fully explained by **P**.

## Null hypothesis

Null hypothesis  $H_0$ :  $T_0$  is fully explained by **P**.

I.e., a value of  $T_0$  is *"typical"* for datasets from  $\mathcal{G}$ .

I.e., it is *very likely* to observe a value  $\mathcal{A}(\mathcal{D}) \ge T_0$  in a dataset  $\mathcal{D}$  taken from  $\mathcal{G}$ .

## Null hypothesis

Null hypothesis  $H_0$ :  $T_0$  is fully explained by **P**.

I.e., a value of  $T_0$  is *"typical"* for datasets from  $\mathcal{G}$ .

I.e., it is *very likely* to observe a value  $\mathcal{A}(\mathcal{D}) \ge T_0$  in a dataset  $\mathcal{D}$  taken from  $\mathcal{G}$ .

Ideally:

$$Q(T_0) = \Pr_{\mathcal{D} \sim \mathcal{G}} \left( \mathcal{A}(\mathcal{D}) \ge T_0 \right).$$
 Reject  $H_0$  if  $Q(T_0) \le \delta.$ 

## Null hypothesis

Null hypothesis  $H_0$ :  $T_0$  is fully explained by **P**.

I.e., a value of  $T_0$  is *"typical"* for datasets from  $\mathcal{G}$ .

I.e., it is *very likely* to observe a value  $\mathcal{A}(\mathcal{D}) \ge T_0$  in a dataset  $\mathcal{D}$  taken from  $\mathcal{G}$ .

Ideally:

$$Q(T_0) = \Pr_{\mathcal{D} \sim \mathcal{G}} \left( \mathcal{A}(\mathcal{D}) \ge T_0 \right).$$
 Reject  $H_0$  if  $Q(T_0) \le \delta.$ 

Very often: no closed form for  $Q(T_0)$ !

## Null hypothesis

Null hypothesis  $H_0$ :  $T_0$  is fully explained by **P**.

I.e., a value of  $T_0$  is *"typical"* for datasets from  $\mathcal{G}$ .

I.e., it is *very likely* to observe a value  $\mathcal{A}(\mathcal{D}) \ge T_0$  in a dataset  $\mathcal{D}$  taken from  $\mathcal{G}$ .

Ideally:

$$Q(T_0) = \Pr_{\mathcal{D} \sim \mathcal{G}} (\mathcal{A}(\mathcal{D}) \ge T_0).$$
 Reject  $H_0$  if  $Q(T_0) \le \delta.$ 

Very often: no closed form for  $Q(T_0)$ ! Instead: empirical estimate  $\tilde{Q}(T_0)$  of  $Q(T_0)$  using samples from  $\mathcal{G}$ 

1. Generate  $\mathbf{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_m\}$  independent uniform samples taken from  $\mathcal{G}$ .

1. Generate  $\mathbf{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_m\}$  independent uniform samples taken from  $\mathcal{G}$ .

2. Run  $\mathcal{A}$  on each  $\mathcal{D}_i \in \mathbf{D}$  to obtain  $\mathbf{T} = \{T_1, \ldots, T_m\}$ .

1. Generate  $\mathbf{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_m\}$  independent uniform samples taken from  $\mathcal{G}$ .

2. Run  $\mathcal{A}$  on each  $\mathcal{D}_i \in \mathbf{D}$  to obtain  $\mathbf{T} = \{T_1, \ldots, T_m\}$ .

3. Compute the *empirical* p-value  $\tilde{Q}(T_0)$ :

$$\tilde{Q}(T_0) = \frac{|\{i: T_i \ge T_0\}| + 1}{m+1}$$

1. Generate  $\mathbf{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_m\}$  independent uniform samples taken from  $\mathcal{G}$ .

2. Run  $\mathcal{A}$  on each  $\mathcal{D}_i \in \mathbf{D}$  to obtain  $\mathbf{T} = \{T_1, \ldots, T_m\}$ .

3. Compute the *empirical* p-value  $\tilde{Q}(T_0)$ :

$$\tilde{Q}(T_0) = \frac{|\{i: T_i \ge T_0\}| + 1}{m+1}$$

4. If 
$$\tilde{Q}(T_0) \leq \delta$$
, reject  $H_0$ .

#### Generating uniform samples

1. Assumption: there exists a perturbation operation

$$\phi:\mathcal{G}\to\mathcal{G}$$

s.t. for any  $\mathcal{D}', \mathcal{D}'' \in \mathcal{G}, \mathcal{D}'$  can be obtained by repeatedly applying  $\phi$  to  $\mathcal{D}''$ .

#### Generating uniform samples

1. Assumption: there exists a perturbation operation

$$\phi:\mathcal{G}\to\mathcal{G}$$

s.t. for any  $\mathcal{D}', \mathcal{D}'' \in \mathcal{G}, \mathcal{D}'$  can be obtained by repeatedly applying  $\phi$  to  $\mathcal{D}''$ .

2. We need to derive sufficient number of perturbations to obtain an independent and uniform sample from  ${\cal G}$ 

## Example

 $\mathcal{D}_0: \text{ observed dataset } (binary matrix). \qquad \begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}$ 

 $T_0 = \mathcal{A}(\mathcal{D}_0) = number$  of frequent itemsets w.r.t. frequency threshold  $\theta$ 



## Example

 $\mathcal{D}_0$ : observed dataset (*binary matrix*). rows: transactions: columns: items

 $T_0 = \mathcal{A}(\mathcal{D}_0) = number$  of frequent itemsets w.r.t. frequency threshold  $\theta$ 

 $\mathbf{P}$  = the rows and columns *totals* 



## Example

 $\mathcal{D}_0$ : observed dataset (*binary matrix*). rows: transactions: columns: items

 $T_0 = \mathcal{A}(\mathcal{D}_0) = number$  of frequent itemsets w.r.t. frequency threshold  $\theta$ 

 $\mathbf{P}$  = the rows and columns *totals* 

QUESTION: Is  $T_0$  a "consequence" of **P**?

Example: perturbation for rows and columns sums

- 1. Take two rows u and v and two columns A and B of  $\mathcal{D}_0$ such that u(A) = v(B) = 1 and u(B) = v(A) = 0;
- 2. Change the rows so that

$$u(B) = v(A) = 1 \text{ and } u(A) = v(B) = 0$$



Fig. 1. A swap in a 0–1 matrix.

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.

Advantages and disadvantages of permutation testing

Conceptually very natural 😄

Requires a perturbation operation  $\phi$  for  $\mathbf{P}$ 

Computationally very expensive:

m times: sample generation + running  $\mathcal{A}$  Sector 4

82/101

# Outline

# Introduction and Theoretical Foundations Mining Statistically-Sound Patterns

- 2.1 LAMP: Tarone's method for Significant Pattern Mining
- 2.2 SPuManTE: relaxing conditional assumptions
- 2.3 Permutation Testing
- 2.4 WY Permutation Testing
- 3. Recent developments and advanced topics
- 4. Final Remarks

# Westfall-Young<sup>8</sup> (WY) Permutation Testing

Perturbation: random shuffle of the labels (repeated m times).



#### Compare *p*-values from original data with random labels.

<sup>&</sup>lt;sup>8</sup>P. H. Westfall and S. S. Young, *Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment*. Wiley-Interscience, 1993. 84/101

# $p_{\min}^{j} = \min p$ -value (over $\mathcal{H}$ ) on *j*-th random label

Estimated FWER for sign. thr.  $\delta$ :  $\overline{FWER}(\delta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min}^{j} \leq \delta\right]$ 

 $p_{\min}^{j} = \min p$ -value (over  $\mathcal{H}$ ) on *j*-th random label Estimated FWER for sign. thr.  $\delta$ :  $\overline{FWER}(\delta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min}^{j} \leq \delta\right]$  $p_{\min}^j$ **Compute**  $\delta^* = \max \left\{ \delta : \overline{FWER}(\delta) \leq \alpha \right\}$  $= \alpha$ -quantile of  $\{p_{\min}^j\}$  $|\alpha m|$ m



 $p_{\min}^{j} = \min p_{\min} p_$ Estimated FWER for sign. thr.  $\delta$ :  $\overline{FWER}(\delta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min}^{j} \leq \delta\right]$  $\begin{array}{l} p_{\min}^{j} \\ \textbf{Compute } \delta^{*} = \max \left\{ \delta : \overline{FWER}(\delta) \leqslant \alpha \right\} & \delta^{*} \end{array}$  $= \alpha$ -quantile of  $\{p_{\min}^j\}$  $|\alpha m|$ m**Output**  $\{S : p_S \leq \delta^*\}$ .

85/101

 $p_{\min}^{j} = \min p$ -value (over  $\mathcal{H}$ ) on *j*-th random label Estimated FWER for sign. thr.  $\delta$ :  $\overline{FWER}(\delta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min}^{j} \leq \delta\right]$ **Compute**  $\delta^* = \max \left\{ \delta : \overline{FWER}(\delta) \leq \alpha \right\} \qquad \begin{array}{c} p_{\min}^j \\ \delta^* \end{array}$  $= \alpha$ -quantile of  $\{p_{\min}^j\}$  $|\alpha m|$ m**Output**  $\{S : p_S \leq \delta^*\}$ .

**Problem**: exhaustive enumeration of  $\mathcal{H}$  to compute  $p_{\min}^{j}$ .

85/101

How to compute  $p_{\min}^{j}$  efficiently?

How to compute  $p_{\min}^j$  efficiently?

# FASTWY<sup>9</sup>: Intuition:

$$\hat{\psi}(\mathcal{S}) \geqslant p_{\min}^{j} = \mathcal{S}$$
 is untestable  $\Rightarrow$  cannot improve  $p_{\min}^{j}$ !

<sup>&</sup>lt;sup>9</sup>A. Terada, K. Tsuda, and J. Sese. *Fast westfall-young permutation procedure for combinatorial regulation discovery*. ICBB, 2013.

(improved version<sup>10</sup> of) FASTWY: computes efficiently  $p_{\min}^{j}$  with a **branch-and-bound search** over  $\mathcal{H}$ , pruning subtrees with  $\hat{\psi}(\cdot)$ :



<sup>10</sup>T. Aika, H. Kim, and J. Sese. *High-speed westfall-young permutation procedure for genome-wide association studies*, ACM-BCB 2015.

# **Issues of** FASTWY:

1) repeat the procedure m times ( $m \simeq 10^3 \text{-} 10^4$  for  $\alpha \simeq 0.05$ ); 2) for some j, the min. p-value  $p_{\min}^j$  is large  $\rightarrow$  large space of testable patterns! (small freq. threshold  $\theta$ )



WYlight

# WYlight<sup>11</sup>: Intuition: to find $\delta^*$ we only need to compute exactly the lower $\alpha$ -quantile of $\{p_{\min}^j\}_{j=1}^m$ .



<sup>11</sup>F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. *Fast and memory-efficient significant pattern mining via permutation testing*, KDD 2015.

89/101

WYlight

# WYlight **algorithm**: one DF exploration of $\mathcal{H}$ processing all m permutations at once.



#### Too many results!

**Motivation**: for many datasets, impractically large set of results (SP(0.05)) are found even when controlling  $FWER \leq 0.05$ :

| dataset          | D         | I       | avg  | $n_1/n$ | SP(0.05)   |
|------------------|-----------|---------|------|---------|------------|
| svmguide3(L)     | 1,243     | 44      | 21.9 | 0.23    | 36,736     |
| chess(U)         | 3,196     | 75      | 37   | 0.05    | $> 10^{7}$ |
| mushroom(L)      | 8,124     | 118     | 22   | 0.48    | 71,945     |
| phishing(L)      | 11,055    | 813     | 43   | 0.44    | $> 10^{7}$ |
| breast cancer(L) | 12,773    | 1,129   | 6.7  | 0.09    | 6          |
| a9a(L)           | 32,561    | 247     | 13.9 | 0.24    | 348,611    |
| pumb-star(U)     | 49,046    | 7117    | 50.5 | 0.44    | $> 10^{7}$ |
| bms-web1(U)      | 58,136    | 60,978  | 2.51 | 0.03    | 704,685    |
| connect(U)       | 67,557    | 129     | 43   | 0.49    | $> 10^{8}$ |
| bms-web2(U)      | 77,158    | 330,285 | 4.59 | 0.04    | 289,012    |
| retail(U)        | 88,162    | 16,470  | 10.3 | 0.47    | 3,071      |
| ijcnn1(L)        | 91,701    | 44      | 13   | 0.10    | 607,373    |
| T10I4D100K(U)    | 100,000   | 870     | 10.1 | 0.08    | 3,819      |
| T40I10D100K(U)   | 100,000   | 942     | 39.6 | 0.28    | 5,986,439  |
| codrna(L)        | 271,617   | 16      | 8    | 0.33    | 4,088      |
| accidents(U)     | 340,183   | 467     | 33.8 | 0.49    | $> 10^{7}$ |
| bms-pos(U)       | 515,597   | 1,656   | 6.5  | 0.40    | 26,366,131 |
| covtype(L)       | 581,012   | 64      | 11.9 | 0.49    | 542,365    |
| susy(U)          | 5,000,000 | 190     | 43   | 0.48    | $> 10^{7}$ |

<sup>&</sup>lt;sup>12</sup>L. Pellegrina and F. Vandin. *Efficient mining of the most significant patterns with permutation testing.* KDD 2018, DAMI 2020.

$$p^{k} = k \text{-th smallest } p \text{-value of } S \in \mathcal{H},$$
  

$$\delta^{*} = \max \{ x : \overline{FWER}(x) \leq \alpha \},$$
  

$$\overline{\delta} = \min \{ p^{k}, \delta^{*} \}.$$

<sup>&</sup>lt;sup>12</sup>L. Pellegrina and F. Vandin. *Efficient mining of the most significant patterns with permutation testing.* KDD 2018, DAMI 2020.

$$p^{k} = k \text{-th smallest } p \text{-value of } S \in \mathcal{H},$$
  

$$\delta^{*} = \max \{ x : \overline{FWER}(x) \leq \alpha \},$$
  

$$\overline{\delta} = \min \{ p^{k}, \delta^{*} \}.$$

Set of top-k significant patterns:

$$TKSP(\mathcal{D}, \mathcal{H}, \alpha, k) := \{ \mathcal{S} : p_{\mathcal{S}} \leq \overline{\delta} \}.$$

<sup>&</sup>lt;sup>12</sup>L. Pellegrina and F. Vandin. *Efficient mining of the most significant patterns with permutation testing.* KDD 2018, DAMI 2020.

$$p^{k} = k \text{-th smallest } p \text{-value of } S \in \mathcal{H},$$
  

$$\delta^{*} = \max \{ x : \overline{FWER}(x) \leq \alpha \},$$
  

$$\overline{\delta} = \min \{ p^{k}, \delta^{*} \}.$$

Set of top-k significant patterns:

$$TKSP(\mathcal{D}, \mathcal{H}, \alpha, k) := \{ \mathcal{S} : p_{\mathcal{S}} \leq \overline{\delta} \}.$$

# Computed efficiently with TopKWY<sup>12</sup>!

<sup>&</sup>lt;sup>12</sup>L. Pellegrina and F. Vandin. *Efficient mining of the most significant patterns with permutation testing*. KDD 2018, DAMI 2020.

TopKWY

**Intuition**: to compute  $TKSP(\mathcal{D}, \mathcal{H}, \alpha, k)$  we only need to compute exactly the values of the set  $\left\{p_{\min}^{j}\right\}_{j=1}^{m}$  that are  $\leq \overline{\delta}$ .



93/101

#### TopKWY

# **Algorithm**: Best First (BF) exploration of $\mathcal{H}$ to compute $\overline{\delta}$ .

(Approach similar to TopKMiner (Pietracaprina and Vandin, 2007) for top-k freq. itemsets).



# TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theorem

Let  $\overline{\delta} = \min\{p^k, \delta\}$ , and  $\theta^* = \max\{x : \hat{\psi}(x) > \overline{\delta}\}$ . TopKWY will process only the set  $FP(\mathcal{D}, \mathcal{H}, \theta^*) = \mathcal{T}(\overline{\delta})$ . Instead, the DF search always explores a super-set of  $\mathcal{T}(\overline{\delta})$ .

<sup>&</sup>lt;sup>13</sup>L. Pellegrina, F. Vandin, *Efficient mining of the most significant patterns with permutation testing*. KDD 2018, DAMI 2020.

# TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theorem

Let  $\overline{\delta} = \min\{p^k, \delta\}$ , and  $\theta^* = \max\{x : \hat{\psi}(x) > \overline{\delta}\}$ . TopKWY will process only the set  $FP(\mathcal{D}, \mathcal{H}, \theta^*) = \mathcal{T}(\overline{\delta})$ . Instead, the DF search always explores a super-set of  $\mathcal{T}(\overline{\delta})$ .

2) Improved bounds to *skip* the processing of the permutations for many patterns.

(More details on the paper<sup>13</sup>  $\bigcirc$ )

<sup>&</sup>lt;sup>13</sup>L. Pellegrina, F. Vandin, *Efficient mining of the most significant patterns with permutation testing*. KDD 2018, DAMI 2020.

# TopKWY: Running time



96/101



- 1. Introduction and Theoretical Foundations
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

Recent developments and advanced topics

- 1. Controlling the FDR
- 2. Covariate-adaptive methods
- 3. Relaxing all conditional assumptions

More details and references at http://rionda.to/statdmtut



- 1. Introduction and Theoretical Foundations
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
- 4. Final Remarks

Knowledge Discovery should be based on hypothesis testing: the data is never the whole universe.

Lots of room for research: we scratched the surface Statistics: tests with higher power, fewer assumptions CS: *scalability* (wrt many dimensions) is still an issue.

Balance theory and practice

Hypothesis Testing and Statistically-sound Pattern Mining Tutorial — SDM'21

Leonardo Pellegrina<sup>1</sup> Matteo Riondato<sup>2</sup> Fabio Vandin<sup>1</sup>

<sup>1</sup>Dept. of Information Engineering, University of Padova (IT)

<sup>2</sup>Dept. of Computer Science, Amherst College (USA)

Tutorial webpage: http://rionda.to/statdmtut

#### 101/101

Let V the number of false discoveries (rejected *null* hypotheses). **Family-Wise Error Rate (FWER)**:  $\Pr[V \ge 1]$ . Let R the number of discoveries (i.e., rejected hypotheses). **False Discovery Rate (FDR)**:  $\mathbb{E}[V/R]$  (assuming V/R = 0 when R = 0).

Let V the number of false discoveries (rejected *null* hypotheses). **Family-Wise Error Rate (FWER)**:  $\Pr[V \ge 1]$ . Let R the number of discoveries (i.e., rejected hypotheses). **False Discovery Rate (FDR)**:  $\mathbb{E}[V/R]$  (assuming V/R = 0 when R = 0).

Significant pattern mining while controlling the FDR?

Some methods for scenario where *significance*  $\neq$  association with a class label:

Some methods for scenario where *significance*  $\neq$  association with a class label:

 significance = deviation from expectation when items place independently in transactions (with same frequency as in dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]

Some methods for scenario where *significance*  $\neq$  association with a class label:

- significance = deviation from expectation when items place independently in transactions (with same frequency as in dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold a ∈ (0, 1), probability class label is c<sub>1</sub> when pattern S is present is ≥ a [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

Some methods for scenario where *significance*  $\neq$  association with a class label:

- significance = deviation from expectation when items place independently in transactions (with same frequency as in dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold a ∈ (0, 1), probability class label is c<sub>1</sub> when pattern S is present is ≥ a [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

# Not a solved problem!

#### Outline

- 1. Introduction and Theoretical Foundations
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
  - 3.1 Controlling the FDR
  - 3.2 Covariate-adaptive methods
  - 3.3 Relaxing all conditional assumptions

# 4. Final Remarks

#### Using additional information

Sometimes there are additional measures (*covariates*) that provide information on *whether* a pattern *can* be significant.

#### Using additional information

Sometimes there are additional measures (*covariates*) that provide information on *whether* a pattern *can* be significant.

**Example**: the support  $\sigma(S)$  of S has an impact on its minimum achivable *p*-value for Fisher's exact test

#### Using additional information

Sometimes there are additional measures (*covariates*) that provide information on *whether* a pattern *can* be significant.

**Example**: the support  $\sigma(S)$  of S has an impact on its minimum achivable *p*-value for Fisher's exact test

The covariate can be used to *weight* hypotheses/patterns or, equivalently, use different correction thresholds for False Discovery Rate (FDR) based on the covariate

Independent Hypothesis Weighting (IHW)<sup>14</sup>

<sup>&</sup>lt;sup>14</sup>Ignatiadis, Nikolaos, et al. *Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.* Nature methods 13.7 (2016): 577.

Independent Hypothesis Weighting (IHW)<sup>14</sup>



<sup>14</sup>Ignatiadis, Nikolaos, et al. *Data-driven hypothesis weighting increases detection power in genome-scale multiple testing*. Nature methods 13.7 (2016): 577.

101/101

Independent Hypothesis Weighting (IHW)<sup>14</sup>



<sup>14</sup>Ignatiadis, Nikolaos, et al. *Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.* Nature methods 13.7 (2016): 577.

101/101

#### Outline

- 1. Introduction and Theoretical Foundations
- 2. Mining Statistically-Sound Patterns
- 3. Recent developments and advanced topics
  - 3.1 Controlling the FDR
  - 3.2 Covariate-adaptive methods
  - 3.3 Relaxing all conditional assumptions
- 4. Final Remarks

## No conditioning?

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \subsetneq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Fisher's test: conditioning on *both row and column totals* Barnard's test: conditioning only on *row totals*.

Removing the conditioning on the columns was really controversial.

It makes sense in a *pattern mining setting* (and others).

## No conditioning?

|                   | $\mathcal{S} \subseteq t_i$ | $\mathcal{S} \subsetneq t_i$  | Row m. |
|-------------------|-----------------------------|-------------------------------|--------|
| $\ell(t_i) = c_1$ | $\sigma_1(\mathcal{S})$     | $n_1 - \sigma_1(\mathcal{S})$ | $n_1$  |
| $\ell(t_i) = c_0$ | $\sigma_0(\mathcal{S})$     | $n_0 - \sigma_0(\mathcal{S})$ | $n_0$  |
| Col. m.           | $\sigma(\mathcal{S})$       | $n - \sigma(\mathcal{S})$     | n      |

Fisher's test: conditioning on *both row and column totals* Barnard's test: conditioning only on *row totals*.

Removing the conditioning on the columns was really controversial.

It makes sense in a *pattern mining setting* (and others).

Q: Shall we stop conditioning on the *row totals*?

In general, removing assumptions is a blessed goal.

Why no conditioning? (2)

Conditioning is *bad*, even when it *approximately* preserve the likelihood.

It destroys the *repeated-sampling* (frequentist) interpretation of *p*-value, because it *reduces the sample space*:

fewer datasets are considered possible, often too few to be realistic.

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it  $\rightarrow$  no controversy!

# Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it  $\rightarrow$  no controversy!

KDD settings:  $\mathcal{D}$  is built by *actually sampling* from a distribution whose domain also include the group label:

the row totals are *random variables* and rightly so.

So let's stop conditioning, and only keep the sample size n as fixed.

# Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it  $\rightarrow$  no controversy!

KDD settings:  $\mathcal{D}$  is built by *actually sampling* from a distribution whose domain also include the group label:

the row totals are *random variables* and rightly so.

So let's stop conditioning, and only keep the sample size n as fixed.

