Hypothesis Testing and

Statistically-sound Pattern Mining

Tutorial - SDM'21

Leonardo Pellegrina ${ }^{1}$ Matteo Riondato ${ }^{2}$ Fabio Vandin ${ }^{1}$
${ }^{1}$ Dept. of Information Engineering, University of Padova (IT)
${ }^{2}$ Dept. of Computer Science, Amherst College (USA)
Tutorial webpage: http://rionda.to/statdmtut

Slides available from http://rionda.to/statdmtut

Outline

1. Introduction and Theoretical Foundations 1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

Introduction

> Data mining and (inferential) statistics have traditionally two different point of views

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

Introduction

Data mining and (inferential) statistics have traditionally two different point of views

- data mining: the data is the complete representation of the world and of the phenomena we are studying
- statistics: the data is obtained from an underlying generative process, that is what we really care about

Similar questions but different flavours!

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"
- Statistics: "What is the probability that a post from C_{1} is related to T ? What is the probability that a post from C_{2} is related to T ?"

Example

Data: information from two online communities C_{1} and C_{2}, regarding whether each post is in a given topic T.

- Data mining: "what fraction of posts in C_{1} are related to T ? What fraction of posts in C_{2} are related to T ?"
- Statistics: "What is the probability that a post from C_{1} is related to T ? What is the probability that a post from C_{2} is related to T ?"

Note: the two are clearly related, but different!

Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees on the underlying generative process?

Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees on the underlying generative process?

We use the statistical hypothesis testing framework

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer

Statistical Hypothesis Testing

We are given:

- a dataset \mathcal{D}
- a question we want to answer \Rightarrow a pattern \mathcal{S}

Example: market basket analysis
Dataset \mathcal{D} : transactions $=$ set of items, label (student/professor) Pattern \mathcal{S} : subset of items (orange, tomato, broccoli)

Example: market basket analysis

Dataset \mathcal{D} : transactions $=$ set of items, label (student/professor) Pattern \mathcal{S} : subset of items (orange, tomato, broccoli)

Question: is \mathcal{S} associated with one of the two labels?

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

The goal is to use the data to either reject H_{0} (" \mathcal{S} is interesting!") or not (" \mathcal{S} is not interesting).

Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the default theory, which corresponds to "nothing interesting" for pattern \mathcal{S}.

The goal is to use the data to either reject H_{0} (" \mathcal{S} is interesting!") or not (" \mathcal{S} is not interesting).

This is decided based on a test statistic, that is, a value $x_{S}=f_{S}(\mathcal{D})$ that describes \mathcal{S} in \mathcal{D}

Statistical Hypothesis Testing: p-value
Let $x_{S}=f_{S}(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.

Statistical Hypothesis Testing: p-value
Let $x_{S}=f_{S}(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)

Statistical Hypothesis Testing: p-value
Let $x_{S}=f_{S}(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$

Statistical Hypothesis Testing: p-value

Let $x_{S}=f_{S}(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$
" X_{S} more extreme than x_{S} ": depends on the test, may be $X_{S} \geqslant x_{S}$ or $X_{S} \leqslant x_{S}$ or something else...

Statistical Hypothesis Testing: p-value

Let $x_{S}=f_{S}(\mathcal{D})$ the value of the test statistic for our dataset \mathcal{D}.
Let X_{S} be the random variable describing the value of the test statistic under the null hypothesis H_{0} (i.e., when H_{0} is true)
p-value: $p=\operatorname{Pr}\left[X_{S}\right.$ more extreme than $x_{S}: H_{0}$ is true $]$
" X_{S} more extreme than x_{S} ": depends on the test, may be $X_{S} \geqslant x_{S}$ or $X_{S} \leqslant x_{S}$ or something else...

Rejection rule:

Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

- type I error: reject H_{0} when H_{0} is true \Rightarrow flag S as significant when it is not (false discovery)
- type II error: do not reject H_{0} when H_{0} is false \Rightarrow do not flag S as significant when it is

Theorem

Using the rejection rule, the probability of a type I error is $\leqslant \alpha$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$
Note: for a test with power β, we have $\operatorname{Pr}[$ type II error $]=1-\beta$

Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:

A test has power β if $\operatorname{Pr}\left[H_{0}\right.$ is rejected : H_{0} is false $]=\beta$
Note: for a test with power β, we have $\operatorname{Pr}[$ type II error $]=1-\beta$
(Power is not everything: if it was, it would be enough to always flag all patterns as significant. . .)

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Null hypothesis H_{0} : the events " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ " are independent.

Example: Testing for Independence

Given:

- transactional dataset $\mathcal{D}=\left\{t_{1}, \ldots, t_{n}\right\}$, each transaction t_{i} has a label $\ell\left(t_{i}\right) \in\left\{c_{0}, c_{1}\right\}$
- a pattern S

Goal: understand if the appearance of S in transactions ($\mathcal{S} \subseteq t_{i}$) and the transactions labels $\left(\ell\left(t_{i}\right)\right)$ are independent.

Null hypothesis H_{0} : the events " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ " are independent.

Alternative hypothesis: there is a dependency between " $\mathcal{S} \subseteq t_{i}$ " and " $\ell\left(t_{i}\right)=c_{1}$ "

Example: market basket analysis

$$
\mathcal{S}=\{\text { orange, tomato, broccoli }\}
$$

Example: market basket analysis
$\mathcal{S}=\{$ orange, tomato, broccoli $\}$

H_{0} : presence of \mathcal{S} is independent of (not associated with) label "professor"

Example: Testing for Independence (2)
Useful representation of the data: contingency table

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}
- $\sigma(\mathcal{S})=\sigma_{0}(\mathcal{S})+\sigma_{1}(\mathcal{S})=$ support of \mathcal{S} in \mathcal{D}

Example: Testing for Independence (2)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

- $\sigma_{1}(\mathcal{S})=$ number of transactions containing \mathcal{S} (=support of \mathcal{S}) with label c_{1}
- $\sigma_{0}(\mathcal{S})=$ support of \mathcal{S} with label c_{0}
- $\sigma(\mathcal{S})=\sigma_{0}(\mathcal{S})+\sigma_{1}(\mathcal{S})=$ support of \mathcal{S} in \mathcal{D}
- $n_{i}=$ number transactions with label c_{i}

Example: Testing for Independence (3)

Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$

Example: market basket analysis

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Value of test statistic $=\sigma_{1}(\mathcal{S})$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Value of test statistic $=\sigma_{1}(\mathcal{S})=3$

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$
p-value: how do we compute it?

Example: Testing for Independence (3)
Useful representation of the data: contingency table

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Test statistic $=\sigma_{1}(S)$
p-value: how do we compute it?
Most common method: Fisher's exact test

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.
\Rightarrow under the null hypothesis (independence), the support of S in class c_{1} follows an hypergeometric distribution of parameters n, n_{1}, and $\sigma_{\mathcal{S}}$

Fisher's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the column marginals $(\sigma(S), n-\sigma(S)$ and the row marginals $\left(n_{0}, n_{1}\right)$ are fixed.
\Rightarrow under the null hypothesis (independence), the support of S in class c_{1} follows an hypergeometric distribution of parameters n, n_{1}, and $\sigma_{\mathcal{S}}$
\Rightarrow the p-value is easily computable!

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,4$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,4$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=\frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}}=0.228$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,4$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=\frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}}=0.228$
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 3\right)=\sum_{k \geqslant 3} \operatorname{Pr}\left(X_{\mathcal{S}}=k\right)=0.243$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim$ hypergeometric of parameters $8,4,4$
\Rightarrow Probability of table $=\operatorname{Pr}\left(X_{\mathcal{S}}=3\right)=\frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}}=0.228$
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 3\right)=\sum_{k \geqslant 3} \operatorname{Pr}\left(X_{\mathcal{S}}=k\right)=0.243$
If $\alpha=0.05 \Rightarrow \mathcal{S}$ is not associated with label "professor"

χ^{2} test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." $\underbrace{\text { 圈 }}$
χ^{2} test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \subseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." G圈
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..." G圈
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m．
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col．m．	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days：＂Fisher＇s exact test is computationally expensive．．．＂$⿴ 囗 十$
Random variables（r．v．）describing outcome under H_{0}（ H_{0} is true）
－$X_{\mathcal{S}, 0}=$ r．v．describing the support of \mathcal{S} in class c_{0}
－$X_{\mathcal{S}, 1}=$ r．v．describing the support \mathcal{S} in class c_{1}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..."
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}
- $X_{\mathcal{S}, 1}=$ r.v. describing the support \mathcal{S} in class c_{1}
- $X_{\overline{\mathcal{S}}, 0}=$ r.v. describing num. transactions without \mathcal{S} in class c_{0}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days: "Fisher's exact test is computationally expensive..."
Random variables (r.v.) describing outcome under H_{0} (H_{0} is true)

- $X_{\mathcal{S}, 0}=$ r.v. describing the support of \mathcal{S} in class c_{0}
- $X_{\mathcal{S}, 1}=$ r.v. describing the support \mathcal{S} in class c_{1}
- $X_{\overline{\mathcal{S}}, 0}=$ r.v. describing num. transactions without \mathcal{S} in class c_{0}
- $X_{\overline{\mathcal{S}}, 1}=$ r.v. describing num. transactions without \mathcal{S} in class c_{1}

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m．
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col．m．	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days：＂Fisher＇s exact test is computationally expensive．．．＂$⿴ 囗 十$
Random variables（r．v．）describing outcome under H_{0}（ H_{0} is true）
－$X_{\mathcal{S}, 0}=$ r．v．describing the support of \mathcal{S} in class c_{0}
－$X_{\mathcal{S}, 1}=$ r．v．describing the support \mathcal{S} in class c_{1}
－$X_{\overline{\mathcal{S}}, 0}=$ r．v．describing num．transactions without \mathcal{S} in class c_{0}
－$X_{\overline{\mathcal{S}}, 1}=$ r．v．describing num．transactions without \mathcal{S} in class c_{1}
Test statistic：$X=\sum_{i \in\{\mathcal{S}, \overline{\mathcal{S}}\}, j \in\{0,1\}}\left(X_{i, j}-\mathbb{E}\left[X_{i, j}\right]\right)^{2} / \mathbb{E}\left[X_{i, j}\right]$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m．
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col．m．	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

In the old days：＂Fisher＇s exact test is computationally expensive．．．＂$⿴ 囗 十$
Random variables（r．v．）describing outcome under H_{0}（ H_{0} is true）
－$X_{\mathcal{S}, 0}=$ r．v．describing the support of \mathcal{S} in class c_{0}
－$X_{\mathcal{S}, 1}=$ r．v．describing the support \mathcal{S} in class c_{1}
－$X_{\overline{\mathcal{S}}, 0}=$ r．v．describing num．transactions without \mathcal{S} in class c_{0}
－$X_{\overline{\mathcal{S}}, 1}=$ r．v．describing num．transactions without \mathcal{S} in class c_{1} Test statistic：$X=\sum_{i \in\{\mathcal{S}, \overline{\mathcal{S}}\}, j \in\{0,1\}}\left(X_{i, j}-\mathbb{E}\left[X_{i, j}\right]\right)^{2} / \mathbb{E}\left[X_{i, j}\right]$
Note： $\mathbb{E}\left[X_{i, j}\right]$ are easily computable

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities for the χ^{2} distribution

Theorem
When $n \rightarrow+\infty, X \rightarrow \chi^{2}$ distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities for the χ^{2} distribution

Note: the χ^{2} test is the asymptotic version of Fisher's exact test.

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2

$$
p \text {-value }=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 2\right)=0.16
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

$X_{\mathcal{S}} \sim \chi^{2}$ with 1 degree of freedom
Test statistic: 2
p-value $=\operatorname{Pr}\left(X_{\mathcal{S}} \geqslant 2\right)=0.16$
If $\alpha=0.05 \Rightarrow \mathcal{S}$ is not associated with label "professor"

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0}$
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}$
Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$

Barnard's exact test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Assumption: the row marginals $\left(n_{0}, n_{1}\right)$ are fixed but the column marginals ($\sigma(S), n-\sigma(S)$) are not!
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0}$
$\operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}$
Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$
π is nuisance parameter, in the sense that we are not interested in its value, but its value defines the distribution of our observations

Bernard's exact test(2)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$

Bernard's exact test(2)

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{0}\right]=\pi_{0} \\
& \operatorname{Pr}\left[\mathcal{S} \subseteq t_{i}: \ell\left(t_{i}\right)=c_{1}\right]=\pi_{1}
\end{aligned}
$$

Null hypothesis $H_{0}: \pi_{0}=\pi_{1}=\pi$
How do we compute the p-value?

Bernard's exact test(3)

28/101

Bernard's exact test(3)

Test statistic: probability of the contingency table

Bernard's exact test(3)

Test statistic: probability of the contingency table
Fixed π, the probability of the contingency table is easy to compute.

Bernard's exact test(3)

Test statistic: probability of the contingency table

Fixed π, the probability of the contingency table is easy to compute.
However, computing the p-value is computationally expensive!

- π is unknown: consider a grid of values for π
- need to enumerate all tables more extreme than the observed table for a given π

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

probability of table given $\pi: \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4}$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

probability of table given $\pi: \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4}$ more extreme tables (given π):

$$
T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\}
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

probability of table given $\pi: \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4}$ more extreme tables (given π):

$$
T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\}
$$

$$
p \text {-value: } \max _{\pi \in(0,1)} \sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)
$$

Example: market basket analysis

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	3	1	4
$\ell\left(t_{i}\right)=c_{0}$	1	3	4
Col. m.	4	4	8

probability of table given $\pi: \operatorname{Pr}(4,3 \mid \pi)=\binom{4}{1}\binom{4}{3}(\pi)^{4}(1-\pi)^{4}$ more extreme tables (given π):

$$
\begin{aligned}
& T(x, y, \pi)=\left\{\left(x^{\prime}, y^{\prime}\right): \operatorname{Pr}\left(x^{\prime}, y^{\prime} \mid \pi\right) \leqslant \operatorname{Pr}(4,3 \mid \pi)\right\} \\
& p \text {-value: } \max _{\pi \in(0,1)} \sum_{(x, y) \in T\left(\sigma(\mathcal{S}), \sigma_{1}(\mathcal{S}), \pi\right)} \operatorname{Pr}(x, y \mid \pi)=0.50(\text { for } \pi=0.4)
\end{aligned}
$$

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction.

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction. What about Fisher's exact test?

Fisher's exact text vs Barnard's exact test

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Note: Barnard's exact test depends on (unknown) nuisance parameter $\pi=$ probability that pattern \mathcal{S} appears in a transaction.

What about Fisher's exact test?

Fixing the frequency $\sigma(S)$ of $\mathcal{S} \approx$ fixing the probability that \mathcal{S} appears in a transaction

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?
Depends on how the data is collected!

Fisher's exact text vs Barnard's exact test (2)

Fisher's test: assumes the frequency $\sigma(S)$ of the pattern is fixed Barnard's test: does not assume the frequency $\sigma(S)$ of the pattern is fixed

Which one is more appropriate?
Depends on how the data is collected!
In practice: everybody uses Fisher's text (computational reasons?)

Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$
KDD scenario: we consider multiple hypotheses given by our dataset \mathcal{D}

Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in
Let p_{S} be the p-value for S.
Rejection rule:
Given a statistical level $\alpha \in(0,1)$: reject H_{0} iff $p \leqslant \alpha \Rightarrow \mathcal{S}$ is significant!
\Rightarrow probability false discovery $\leqslant \alpha$
KDD scenario: we consider multiple hypotheses given by our dataset \mathcal{D}

What happens if we use the rejection rule above?

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Multiple hypothesis testing
Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
E.g., itemsets from a universe \mathcal{I} of items: $m=2^{|\mathcal{I}|}-1$

Multiple hypothesis testing

Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
E.g., itemsets from a universe \mathcal{I} of items: $m=2^{|\mathcal{I}|}-1$

Proposition
If we use α to test the significance of each hypothesis in \mathcal{H}, then

$$
\mathbb{E}[\text { number of false discoveries }]=m \times \alpha
$$

Multiple hypothesis testing

Let \mathcal{H} be the set of hypotheses we want to test, and $m=|\mathcal{H}|$.
E.g., itemsets from a universe \mathcal{I} of items: $m=2^{|\mathcal{I}|}-1$

Proposition
If we use α to test the significance of each hypothesis in \mathcal{H}, then

$$
\mathbb{E}[\text { number of false discoveries }]=m \times \alpha
$$

Typical α to test a single hypothesis: $\alpha=0.05$ or 0.01
\Rightarrow many false discoveries in expectation
\Rightarrow at least one with high probability!
We want guarantees on the probability of any false discovery

Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery Family-Wise Error Rate (FWER):

$$
\operatorname{Pr}[>0 \text { false discoveries }]
$$

We want $F W E R \leqslant \alpha$, for some $\alpha \in(0,1)$.
How to achieve this goal?

Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery Family-Wise Error Rate (FWER):

$$
\operatorname{Pr}[>0 \text { false discoveries }]
$$

We want $F W E R \leqslant \alpha$, for some $\alpha \in(0,1)$.
How to achieve this goal?

- Bonferroni correction
- Bonferroni-Holm procedure

Bonferroni correction

\mathcal{H} : set of hypotheses (patterns) to test, $m=|\mathcal{H}|$. For $\mathcal{S} \in \mathcal{H}$, let $H_{\mathcal{S}, 0}$ be the corresponding null hypothesis.

Bonferroni correction

\mathcal{H} : set of hypotheses (patterns) to test, $m=|\mathcal{H}|$.
For $\mathcal{S} \in \mathcal{H}$, let $H_{\mathcal{S}, 0}$ be the corresponding null hypothesis.
Rejection rule: Given a statistical level $\alpha \in(0,1)$: reject $H_{S, 0}$ (i.e., flag \mathcal{S} as significant) iff $p \leqslant \frac{\alpha}{m}$

Bonferroni correction

\mathcal{H} : set of hypotheses (patterns) to test, $m=|\mathcal{H}|$.
For $\mathcal{S} \in \mathcal{H}$, let $H_{\mathcal{S}, 0}$ be the corresponding null hypothesis.
Rejection rule: Given a statistical level $\alpha \in(0,1)$:
reject $H_{S, 0}$ (i.e., flag \mathcal{S} as significant) iff $p \leqslant \frac{\alpha}{m}$
Why does this approach controls the FWER?

- for each $\mathcal{S}, \operatorname{Pr}[\mathcal{S}$ is a false discovery $] \leqslant \frac{\alpha}{m}$

Bonferroni correction

\mathcal{H} : set of hypotheses (patterns) to test, $m=|\mathcal{H}|$.
For $\mathcal{S} \in \mathcal{H}$, let $H_{\mathcal{S}, 0}$ be the corresponding null hypothesis.
Rejection rule: Given a statistical level $\alpha \in(0,1)$:
reject $H_{S, 0}$ (i.e., flag \mathcal{S} as significant) iff $p \leqslant \frac{\alpha}{m}$
Why does this approach controls the FWER?

- for each $\mathcal{S}, \operatorname{Pr}[\mathcal{S}$ is a false discovery $] \leqslant \frac{\alpha}{m}$
- union bound on m events: $\operatorname{Pr}[>0$ false discoveries $]$ $\leqslant \sum_{\mathcal{S} \in \mathcal{H}} \operatorname{Pr}[S$ is false discovery $] \leqslant|\mathcal{H}| \frac{\alpha}{m} \leqslant \alpha$

Choosing hypotheses before testing?

Alphabet of items \mathcal{I} with $|\mathcal{I}|=6000$
Dataset \mathcal{D} with 10 transactions with label $c_{1}, 10$ with label c_{0} Hypotheses $\mathcal{H}=\mathcal{I}$

- "large m, small data: nothing will be flagged as significant!" ${ }^{\text {G }}$

Choosing hypotheses before testing?

Alphabet of items \mathcal{I} with $|\mathcal{I}|=6000$
Dataset \mathcal{D} with 10 transactions with label $c_{1}, 10$ with label c_{0} Hypotheses $\mathcal{H}=\mathcal{I}$

- "large m, small data: nothing will be flagged as significant!"
- "let's select some hypotheses first, and then do the testing...": find pattern $\mathcal{S}^{*}=\arg \max _{\mathcal{S} \in \mathcal{H}}\left(\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})\right)$.
- "I am going to test only \mathcal{S}^{*} !"

$$
\text { E.g., } \sigma_{1}\left(\mathcal{S}^{*}\right)=10, \sigma_{0}\left(\mathcal{S}^{*}\right)=0 \text {. Fisher's test } p \text {-value }=0.0001
$$

Choosing hypotheses before testing?

Alphabet of items \mathcal{I} with $|\mathcal{I}|=6000$
Dataset \mathcal{D} with 10 transactions with label $c_{1}, 10$ with label c_{0} Hypotheses $\mathcal{H}=\mathcal{I}$

- "large m, small data: nothing will be flagged as significant!"
- "let's select some hypotheses first, and then do the testing...": find pattern $\mathcal{S}^{*}=\arg \max _{\mathcal{S} \in \mathcal{H}}\left(\sigma_{1}(\mathcal{S})-\sigma_{0}(\mathcal{S})\right)$.
- "I am going to test only \mathcal{S}^{*} !"

$$
\text { E.g., } \sigma_{1}\left(\mathcal{S}^{*}\right)=10, \sigma_{0}\left(\mathcal{S}^{*}\right)=0 \text {. Fisher's test } p \text {-value }=0.0001
$$

- " $\mathcal{S} *$ is very significant!!!" $)$
" \mathcal{S} is very significant!!!" ©
BUT IT IS NOT!
" \mathcal{S} is very significant!!!" ${ }^{-}$

BUT IT IS NOT!

Assume that \mathcal{D} is generated as follows:

- Each item/pattern \mathcal{S} will appear exactly 10 times
- For $i=1, \ldots, 10$, place \mathcal{S} in the i-th transaction labeled c_{0} with probability $1 / 2$, and the i-th transaction labeled c_{1} otherwise
No pattern \mathcal{S} is associated with class labels!
" \mathcal{S} is very significant!!!" :)

BUT IT IS NOT!

Assume that \mathcal{D} is generated as follows:

- Each item/pattern \mathcal{S} will appear exactly 10 times
- For $i=1, \ldots, 10$, place \mathcal{S} in the i-th transaction labeled c_{0} with probability $1 / 2$, and the i-th transaction labeled c_{1} otherwise
No pattern \mathcal{S} is associated with class labels!
For a given $\mathcal{S}, \operatorname{Pr}\left(\sigma_{1}(\mathcal{S})=10\right.$ and $\left.\sigma_{0}(\mathcal{S})=0\right)=(1 / 2)^{10}=1 / 1024$
" \mathcal{S} is very significant!!!" ©

BUT IT IS NOT!

Assume that \mathcal{D} is generated as follows:

- Each item/pattern \mathcal{S} will appear exactly 10 times
- For $i=1, \ldots, 10$, place \mathcal{S} in the i-th transaction labeled c_{0} with probability $1 / 2$, and the i-th transaction labeled c_{1} otherwise
No pattern \mathcal{S} is associated with class labels!
For a given $\mathcal{S}, \operatorname{Pr}\left(\sigma_{1}(\mathcal{S})=10\right.$ and $\left.\sigma_{0}(\mathcal{S})=0\right)=(1 / 2)^{10}=1 / 1024$
In expectation, ≈ 5 patterns with $\sigma_{1}(\mathcal{S})=10$ and $\sigma_{0}(\mathcal{S})=0$. they are all false discoveries!

Where is the problem?
We selected the hypothesis to test on the basis of its support $\sigma_{1}(\mathcal{S})$

Where is the problem?

We selected the hypothesis to test on the basis of its support $\sigma_{1}(\mathcal{S})$

$$
\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S}) \text { is clearly related to the } p \text {-value }
$$

Where is the problem？

We selected the hypothesis to test on the basis of its support $\sigma_{1}(\mathcal{S})$

$$
\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S}) \text { is clearly related to the } p \text {-value }
$$

We have essentially looked at the p－values of all hypotheses and then acted as if we did not！$⿴ 囗 十$

Where is the problem？

We selected the hypothesis to test on the basis of its support $\sigma_{1}(\mathcal{S})$

$$
\sigma_{1}(\mathcal{S})=10-\sigma_{0}(\mathcal{S}) \text { is clearly related to the } p \text {-value }
$$

We have essentially looked at the p－values of all hypotheses and then acted as if we did not！$⿴ 囗 十$

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing1.5 Selecting Hypothesis1.6 Hypotheses Testability2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

Selecting hypotheses

A smaller \mathcal{H} will lead to a higher corrected significance threshold $\alpha /|\mathcal{H}|$, thus may lead to higher power.

Selecting hypotheses

A smaller \mathcal{H} will lead to a higher corrected significance threshold $\alpha /|\mathcal{H}|$, thus may lead to higher power.

Question: can we shrink \mathcal{H} a posteriori?
I.e., Can we use \mathcal{D} to select $\mathcal{H}^{\prime} \subsetneq \mathcal{H}$ such that $\mathcal{H} \backslash \mathcal{H}^{\prime}$ only contains non-significant hypotheses?

Selecting hypotheses

A smaller \mathcal{H} will lead to a higher corrected significance threshold $\alpha /|\mathcal{H}|$, thus may lead to higher power.

Question: can we shrink \mathcal{H} a posteriori?
I.e., Can we use \mathcal{D} to select $\mathcal{H}^{\prime} \subsetneq \mathcal{H}$ such that $\mathcal{H} \backslash \mathcal{H}^{\prime}$ only contains non-significant hypotheses?

Answer: No....and yes! ;)

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using \mathcal{D}.
2) Use the test results to select which hypotheses to include in \mathcal{H}^{\prime}.
3) Use Bonferroni correction on \mathcal{H}^{\prime} to bound the FWER (for \mathcal{H})

How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using \mathcal{D}.
2) Use the test results to select which hypotheses to include in \mathcal{H}^{\prime}.
3) Use Bonferroni correction on \mathcal{H}^{\prime} to bound the FWER (for \mathcal{H})

Selecting \mathcal{H}^{\prime} must be done without performing the tests on \mathcal{D}.

The holdout approach

1. Partition \mathcal{D} into \mathcal{D}_{1} and $\mathcal{D}_{2}: \mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$ and $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\varnothing$.
2. Apply some selection procedure to \mathcal{D}_{1} to select \mathcal{H}^{\prime} (it may include performing the tests on \mathcal{D}_{1}).
3) Perform the individual test for each hypothesis in \mathcal{H}^{\prime} on \mathcal{D}_{2}, using the Bonferroni correction on \mathcal{H}^{\prime}.

The holdout approach

1. Partition \mathcal{D} into \mathcal{D}_{1} and $\mathcal{D}_{2}: \mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$ and $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\varnothing$.
2. Apply some selection procedure to \mathcal{D}_{1} to select \mathcal{H}^{\prime} (it may include performing the tests on \mathcal{D}_{1}).
3) Perform the individual test for each hypothesis in \mathcal{H}^{\prime} on \mathcal{D}_{2}, using the Bonferroni correction on \mathcal{H}^{\prime}.

Splitting \mathcal{D} is similar to using a training set and a test set.

An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007

When holdout works and why

Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

When holdout works and why

Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

Such partitioning may not exist or be known.

Holdout can be used only when \mathcal{D} can be partitioned into \mathcal{D}_{1} and \mathcal{D}_{2} s.t. \mathcal{D}_{1} and \mathcal{D}_{2} are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting induced subgraphs is a sample from the original distribution:
what do you do with edges crossing the two sets?

How selective shall we be?

Let $\mathcal{Z}_{\alpha} \subseteq \mathcal{H}$ be the set of α-significant hypotheses.

When selecting \mathcal{H}^{\prime}, we may get rid of some α-significant ones:

$$
\mathcal{Z}_{\alpha} \cap\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \neq \varnothing .
$$

Does the power increases because the corrected significance threshold increases?

How selective shall we be?

Let $\mathcal{Z}_{\alpha} \subseteq \mathcal{H}$ be the set of α-significant hypotheses.

When selecting \mathcal{H}^{\prime}, we may get rid of some α-significant ones:

$$
\mathcal{Z}_{\alpha} \cap\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \neq \varnothing .
$$

Does the power increases because the corrected significance threshold increases? Unclear!

One can build examples where power \uparrow, \downarrow, or $=$.

Take-away message

Being more or less selective in choosing \mathcal{H}^{\prime} has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout may remove α-significant hypotheses from \mathcal{H}.

OTOH , holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not α-significant.

Take-away message

Being more or less selective in choosing \mathcal{H}^{\prime} has a complicated effect on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that holdout may remove α-significant hypotheses from \mathcal{H}.

OTOH, holdout is a simple natural procedure, and it generally leads to higher power because most discarded hypotheses are not α-significant.

Coming up: how to discard only non- α-significant hypotheses.

Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis1.6 Hypotheses Testability
2. Mining Statistically-Sound Patterns3. Recent developments and advanced topics4. Final Remarks

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ $(\Rightarrow n=15, n-\sigma(S)=10)$.

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ?

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	5	0	5
$\ell\left(t_{i}\right)=c_{0}$	0	10	10
Col. m.	5	10	15

A breakthrough [Tarone 1990]
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

Example Consider a dataset with $n_{0}=5, n_{1}=10, \sigma(S)=5$ ($\Rightarrow n=15, n-\sigma(S)=10$).
Smallest p-value for S ? When $\sigma_{1}(S)=5$

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	5	0	5
$\ell\left(t_{i}\right)=c_{0}$	0	10	10
Col. m.	5	10	15

minimum attainable p-value $=3 \times 10^{-4}$

A breakthrough [Tarone 1990] (2)
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be the statistic for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ assuming $\sigma_{1}(\mathcal{S})=x$.

A breakthrough [Tarone 1990] (2)
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \varsubsetneqq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be the statistic for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ assuming $\sigma_{1}(\mathcal{S})=x$.

It must be $\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}$

A breakthrough [Tarone 1990] (2)
The statistic of Fisher's exact test is discrete \Rightarrow there is a minimum attainable p-value for a pattern \mathcal{S}.

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Let $p^{F}(\sigma(\mathcal{S}), x)$ be the statistic for pattern \mathcal{S} with support $\sigma(\mathcal{S})$ assuming $\sigma_{1}(\mathcal{S})=x$.

It must be $\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}$
\Rightarrow the range of $p^{F}(\sigma(\mathcal{S}), x)$ depends only on $\sigma(\mathcal{S})\left(n, n_{1}\right.$ are fixed $)$

A breakthrough [Tarone 1990] (3)

Then the minimum attainable p-value for \mathcal{S} is:

$$
\psi(\sigma(\mathcal{S}))=\min _{\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}} p^{F}(\sigma(\mathcal{S}), x)
$$

A breakthrough [Tarone 1990] (3)

Then the minimum attainable p-value for \mathcal{S} is:

$$
\psi(\sigma(\mathcal{S}))=\min _{\max \left\{0, n_{1}-(n-\sigma(\mathcal{S}))\right\} \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}} p^{F}(\sigma(\mathcal{S}), x)
$$

Tarone's result: when testing each hypothesis with significance level δ, then the hypotheses that will certainly have p-value greater than δ do not need to be counted when using Bonferroni's correction! ;

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\delta$

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\delta \Rightarrow \mathcal{S}$ is untestable.

A breakthrough [Tarone 1990] (4)
\mathcal{S} cannot be significant with significance level δ if $\psi(\sigma(\mathcal{S}))>\delta \Rightarrow \mathcal{S}$ is untestable.

Set of testable hypotheses (for significance level δ):

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

All the others do not really matter, and should not be counted when applying the Bonferroni correction to control for the FWER.

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$
minimum attainable p-value
$\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}$

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$ minimum attainable p-value
$\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}$ obtained for $x=4: \psi(4)=0.014$.

Example: market basket analysis

$\mathcal{S}=\{$ orange, tomato, broccoli $\}$ minimum attainable p-value $\psi(\sigma(\mathcal{S}))=\min _{0 \leqslant x \leqslant \min \left\{\sigma(\mathcal{S}), n_{1}\right\}}\left\{p^{F}(\sigma(\mathcal{S}), x)\right\}$ obtained for $x=4: \psi(4)=0.014$.
\Rightarrow if the significance level used to test each hypothesis is $\delta=0.01$, you do not need to count \mathcal{S} among the hypotheses!

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff $p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff $p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!

Theorem
The FWER is $\leqslant \alpha$.

Tarone's Improved Bonferroni correction
Set of testable hypotheses:

$$
\mathcal{T}(\delta)=\{\mathcal{S} \mid \psi(\sigma(\mathcal{S})) \leqslant \delta\}
$$

Rejection rule:
Given a statistical level $\alpha \in(0,1)$, let $\delta \leqslant \alpha /|\mathcal{T}(\delta)|$: reject H_{0} iff $p \leqslant \delta \Rightarrow \mathcal{S}$ is significant!

Theorem
The FWER is $\leqslant \alpha$.

Idea: find $\delta^{*}=\max \{\delta: \delta \leqslant \alpha /|\mathcal{T}(\delta)|\}$!

Now, like always, is a good time for questions on:
Multiple hypothesis testing
Bonferroni Correction
Tarone's approach to selecting hypotheses
Minimal attainable p-value
Anything else $=$)

Now, like always, is a good time for questions on:
Multiple hypothesis testing
Bonferroni Correction
Tarone's approach to selecting hypotheses
Minimal attainable p-value
Anything else $=$)
Let's take a 5-10 minutes break.

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Selecting testable patterns

Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} : select patterns to test from \mathcal{H}.

Selecting testable patterns

Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} : select patterns to test from \mathcal{H}.

Naïve approach: compute $\psi(\sigma(\mathcal{S}))$ for all $\mathcal{S} \in \mathcal{H}$, find δ^{\star}

Selecting testable patterns

Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} : select patterns to test from \mathcal{H}.

Naïve approach: compute $\psi(\sigma(\mathcal{S}))$ for all $\mathcal{S} \in \mathcal{H}$, find δ^{\star}

Not possible to enumerate all $\mathcal{S} \in \mathcal{H} \ldots$

Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} is a function of its support $\sigma(\mathcal{S})$ in the data.
Low (and very high) support $\sigma(\mathcal{S}) \rightarrow$ large $\psi(\sigma(\mathcal{S}))$

[^0]Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} is a function of its support $\sigma(\mathcal{S})$ in the data.
Low (and very high) support $\sigma(\mathcal{S}) \rightarrow$ large $\psi(\sigma(\mathcal{S}))$

$$
n=60, n_{1}=30
$$

(from F. Llinares-López, D. Roqueiro, ISMB'18 Tutorial.)

[^1]Minimum attainable p-value $\psi(\sigma(\mathcal{S}))$ of a pattern \mathcal{S} is a function of its support $\sigma(\mathcal{S})$ in the data.
Low (and very high) support $\sigma(\mathcal{S}) \rightarrow$ large $\psi(\sigma(\mathcal{S}))$

$$
n=60, n_{1}=30
$$

(from F. Llinares-López, D. Roqueiro, ISMB'18 Tutorial.)

Intuition of LAMP ${ }^{1}$: connection betw. testable and frequent patterns!

[^2]
Frequent Pattern Mining

Frequent Pattern Mining: given \mathcal{D}, compute the set of frequent patterns $\operatorname{FP}(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$ w.r.t. support θ, that is

$$
F P(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\} .
$$

Frequent Pattern Mining

Frequent Pattern Mining: given \mathcal{D}, compute the set of frequent patterns $F P(\mathcal{D}, \mathcal{H}, \theta) \subseteq \mathcal{H}$ w.r.t. support θ, that is

$$
F P(\mathcal{D}, \mathcal{H}, \theta):=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\} .
$$

Typical approach: Explore the search tree of \mathcal{H}, pruning subtrees with support $<\theta$ (monotonicity of support)

Frequent Pattern Mining

Monotonicity of patterns' support
Theorem
Let \mathcal{S} be an itemset. Then it holds $\sigma\left(\mathcal{S}^{\prime}\right) \leqslant \sigma(\mathcal{S})$ for all $\mathcal{S}^{\prime} \supseteq \mathcal{S}$.

Example:

$$
\begin{aligned}
& \mathcal{S}^{\prime}=\{\boldsymbol{\sim}, \boldsymbol{*}\}, \mathcal{S}=\{ \} \\
& \sigma\left(\mathcal{S}^{\prime}\right)=2 \leqslant \sigma(\mathcal{S})=5
\end{aligned}
$$

Valid for many other patterns (e.g., subgraphs, sequential patterns, subgroups, ...)

LAMP: monotone minimum achievable p-value function $\hat{\psi}(\cdot)$:

$$
\hat{\psi}(x)= \begin{cases}\psi(x) & , \text { if } x \leqslant n_{1} \\ \psi\left(n_{1}\right) & , \text { othw }\end{cases}
$$

We obtain the equivalence:

$$
\mathcal{T}(\hat{\psi}(\theta))=F P(\mathcal{D}, \mathcal{H}, \theta)=\{\mathcal{S} \in \mathcal{H}: \sigma(\mathcal{S}) \geqslant \theta\}
$$

Thus:

$$
|\mathcal{T}(\hat{\psi}(\theta))|=|F P(\mathcal{D}, \mathcal{H}, \theta)| .
$$

We can use $|F P(\mathcal{D}, \mathcal{H}, \theta)|$ to find

$$
\delta^{*}=\max \{\delta: \delta|\mathcal{T}(\delta)| \leqslant \alpha\} .
$$

LAMP algorithm: compute $\delta^{*}=\max \{\delta: \delta|\mathcal{T}(\delta)| \leqslant \alpha\}$ enumerating Frequent Itemsets.

Performs multiple Frequent Pattern Mining instances (decreasing values of θ) to evaluate $|F P(\mathcal{D}, \mathcal{H}, \theta)|$.

(imgs. from LAMP paper)

LAMP: Experimental Results

(imgs. from LAMP)

Estimated $F W E R(\alpha=0.05)$ of LAMP vs Bonferroni correction.

> For θ_{2} we count again all patterns already counted for $\theta_{1} \geqslant \theta_{2}$!

> For θ_{2} we count again all patterns already counted for $\theta_{1} \geqslant \theta_{2}$!

Is it possible to explore patterns only once?

SupportIncrease ${ }^{2}$: LAMP with only one Depth-First (DF) exploration of \mathcal{H}.

[^3]
Mining Significant Subgraphs ${ }^{4}$

Goal: find induced subgraphs that are significantly enriched in a class of labelled graphs
(imgs. from ${ }^{3}$)

[^4]
Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& (\text { gray }=\text { fixed, } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment.

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& (\text { gray }=\text { fixed } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment.

In many cases, only n_{0}, n_{1}, and n are fixed, while $\sigma(\mathcal{S})$ depends on the data \rightarrow Unconditional Test!

Relaxing conditional assumptions

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \text { (gray = fixed, } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Recap: Assumptions of Fisher's test: all marginals of all the tested contingency tables are fixed by design of the experiment.

In many cases, only n_{0}, n_{1}, and n are fixed, while $\sigma(\mathcal{S})$ depends on the data \rightarrow Unconditional Test!

Not used in practice, mainly for computational reasons...

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& \text { (gray }=\text { fixed, } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j} "\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i} "\right)$.

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& (\text { gray }=\text { fixed } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j} "\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i} "\right)$.
Let $\mathcal{C}_{\mathcal{S}}=$ observed contingency table for \mathcal{S}.

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \ddagger t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& (\text { gray }=\text { fixed, } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i}\right.$ "|" $\ell\left(t_{i}\right)=c_{j}$ "),
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i} "\right)$.
Let $\mathcal{C}_{\mathcal{S}}=$ observed contingency table for \mathcal{S}.

$$
P(\mathcal{C} \mid \pi)=\text { prob. of a table } \mathcal{C} \text { assuming } \mathrm{NH} \text { and } \pi_{\mathcal{S}}=\pi
$$

$$
T\left(\mathcal{C}_{\mathcal{S}}, \pi\right)=\left\{\text { more extreme cont. tables of } \mathcal{C}_{\mathcal{S}}\right\}
$$

$$
\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right)=\sum_{\mathcal{C} \in T\left(\mathcal{C}_{\mathcal{S}}, \pi\right)} P(\mathcal{C} \mid \pi)
$$

$$
p \text {-value: } p_{\mathcal{S}}=\max _{\pi \in[0,1]}\left\{\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right)\right\}
$$

Recap: Barnard's Exact Test

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \leftrightarrows t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

$$
\begin{aligned}
& (\text { gray }=\text { fixed, } \\
& \text { yellow }=\text { random })
\end{aligned}
$$

Nuisance variables: $\pi_{\mathcal{S}, j}=P\left(" \mathcal{S} \subseteq t_{i} " \mid " \ell\left(t_{i}\right)=c_{j}{ }^{\prime}\right)$,
$\mathrm{NH}: \pi_{\mathcal{S}, 0}=\pi_{\mathcal{S}, 1}=\pi_{\mathcal{S}}=P\left(" \mathcal{S} \subseteq t_{i} "\right)$.
Let $\mathcal{C}_{\mathcal{S}}=$ observed contingency table for \mathcal{S}.
$P(\mathcal{C} \mid \pi)=$ prob. of a table \mathcal{C} assuming NH and $\pi_{\mathcal{S}}=\pi$
$T\left(\mathcal{C}_{\mathcal{S}}, \pi\right)=\left\{\right.$ more extreme cont. tables of $\left.\mathcal{C}_{\mathcal{S}}\right\}$

$$
\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right)=\sum_{\mathcal{C} \in T\left(\mathcal{C}_{\mathcal{S}}, \pi\right)} P(\mathcal{C} \mid \pi)
$$

p-value: $p_{\mathcal{S}}=\max _{\pi \in[0,1]}\left\{\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right)\right\} \rightarrow$ hard to compute!

Efficient Unconditional Testing: SPuManTE ${ }^{5}$

1) Computes confidence intervals $C_{j}(\mathcal{S})$ for $\pi_{\mathcal{S}, j}$
[^5]
Efficient Unconditional Testing: SPuManTE ${ }^{6}$

1) Computes confidence intervals $C_{j}(\mathcal{S})$ for $\pi_{\mathcal{S}, j}$

Compute a probabilistic (high prob.) upper bound to

$$
\sup _{\mathcal{S} \in \mathcal{H}, j \in\{0,1\}}\left|\pi_{\mathcal{S}, j}-\frac{\sigma_{j}(\mathcal{S})}{n_{j}}\right|
$$

(note: $\sigma_{j}(\mathcal{S}) / n_{j}$ is observed from $\mathcal{D}, \pi_{\mathcal{S}, j}$ is unknown)
How? Upper bound ${ }^{5}$ to Rademacher Complexity of \mathcal{H}.

[^6]
Efficient Unconditional Testing: SPuManTE

2) p-value p_{S} according to confidence intervals:

$$
p_{S}= \begin{cases}0 & , \text { if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right), \pi \in C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

Flag \mathcal{S} as significant if $p_{S} \leqslant \delta$.

Efficient Unconditional Testing: SPuManTE

p-value p_{S} according to confidence intervals:

$$
p_{S}= \begin{cases}0 & , \text { if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw. }\end{cases}
$$

p-value p_{S} is still expensive to compute in second case!

[^7]
Efficient Unconditional Testing: SPuManTE

p-value p_{S} according to confidence intervals:

$$
p_{S}= \begin{cases}0 & , \text { if } C_{0}(\mathcal{S}) \cap C_{1}(\mathcal{S})=\varnothing \\ \max \left\{\phi\left(\mathcal{C}_{\mathcal{S}}, \pi\right), \pi \in C(\mathcal{S})\right\} & , \text { othw }\end{cases}
$$

p-value p_{S} is still expensive to compute in second case!
3) Upper and Lower bounds to p_{S}, and efficient algorithm for computation of $\phi(\cdot)$

More in the paper ${ }^{7}$:)

[^8]
Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Permutation Testing

Main idea: estimate the null distribution by randomly perturbing the observed data.

Permutation Testing

Main idea: estimate the null distribution by randomly perturbing the observed data.

Pro: takes advantage of the dependence structure of the hypothesis
Cons: computationally expensive, assumptions

Permutation Testing: Setting

\mathcal{D}_{0} : observed dataset from some generative process \mathcal{G}.
E.g., a transactional dataset

Permutation Testing: Setting

\mathcal{D}_{0} : observed dataset from some generative process \mathcal{G}. E.g., a transactional dataset
$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ

Permutation Testing: Setting

\mathcal{D}_{0} : observed dataset from some generative process \mathcal{G}. E.g., a transactional dataset
$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ

P: a set of properties of \mathcal{D}_{0} satisfied by all $\mathcal{D} \in \mathcal{G}$
E.g., the rows and columns totals

Permutation Testing: Setting

\mathcal{D}_{0} : observed dataset from some generative process \mathcal{G}. E.g., a transactional dataset
$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right) \in \mathbb{R}$: output of analysis algorithm \mathcal{A} on \mathcal{D}_{0}
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ

P: a set of properties of \mathcal{D}_{0} satisfied by all $\mathcal{D} \in \mathcal{G}$
E.g., the rows and columns totals

Question: Is T_{0} surprising? Or just a "consequence" of \mathbf{P} ?

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical" for datasets from \mathcal{G}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D}) \geqslant T_{0}$ in
a dataset \mathcal{D} taken from \mathcal{G}.

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical" for datasets from \mathcal{G}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D}) \geqslant T_{0}$ in
a dataset \mathcal{D} taken from \mathcal{G}.
Ideally:

$$
Q\left(T_{0}\right)=\operatorname{Pr}_{\mathcal{D} \sim \mathcal{G}}\left(\mathcal{A}(\mathcal{D}) \geqslant T_{0}\right) . \text { Reject } H_{0} \text { if } Q\left(T_{0}\right) \leqslant \delta
$$

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical" for datasets from \mathcal{G}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D}) \geqslant T_{0}$ in
a dataset \mathcal{D} taken from \mathcal{G}.
Ideally:

$$
Q\left(T_{0}\right)=\operatorname{Pr}_{\mathcal{D} \sim \mathcal{G}}\left(\mathcal{A}(\mathcal{D}) \geqslant T_{0}\right) . \quad \text { Reject } H_{0} \text { if } Q\left(T_{0}\right) \leqslant \delta
$$

Very often: no closed form for $Q\left(T_{0}\right)$!

Null hypothesis

Null hypothesis H_{0} : T_{0} is fully explained by \mathbf{P}.
I.e., a value of T_{0} is "typical" for datasets from \mathcal{G}.
I.e., it is very likely to observe a value $\mathcal{A}(\mathcal{D}) \geqslant T_{0}$ in
a dataset \mathcal{D} taken from \mathcal{G}.
Ideally:

$$
Q\left(T_{0}\right)=\operatorname{Pr}_{\mathcal{D} \sim \mathcal{G}}\left(\mathcal{A}(\mathcal{D}) \geqslant T_{0}\right) . \quad \text { Reject } H_{0} \text { if } Q\left(T_{0}\right) \leqslant \delta
$$

Very often: no closed form for $Q\left(T_{0}\right)$!
Instead: empirical estimate $\tilde{Q}\left(T_{0}\right)$ of $Q\left(T_{0}\right)$ using samples from \mathcal{G}

Permutation Testing

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$ independent uniform samples taken from \mathcal{G}.

Permutation Testing

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$ independent uniform samples taken from \mathcal{G}.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{m}\right\}$.

Permutation Testing

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$ independent uniform samples taken from \mathcal{G}.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{m}\right\}$.
3. Compute the empirical p-value $\tilde{Q}\left(T_{0}\right)$:

$$
\tilde{Q}\left(T_{0}\right)=\frac{\left|\left\{i: T_{i} \geqslant T_{0}\right\}\right|+1}{m+1}
$$

Permutation Testing

1. Generate $\mathbf{D}=\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$ independent uniform samples taken from \mathcal{G}.
2. Run \mathcal{A} on each $\mathcal{D}_{i} \in \mathbf{D}$ to obtain $\mathbf{T}=\left\{T_{1}, \ldots, T_{m}\right\}$.
3. Compute the empirical p-value $\tilde{Q}\left(T_{0}\right)$:

$$
\tilde{Q}\left(T_{0}\right)=\frac{\left|\left\{i: T_{i} \geqslant T_{0}\right\}\right|+1}{m+1}
$$

4. If $\tilde{Q}\left(T_{0}\right) \leqslant \delta$, reject H_{0}.

Generating uniform samples

1. Assumption: there exists a perturbation operation

$$
\phi: \mathcal{G} \rightarrow \mathcal{G}
$$

s.t. for any $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime} \in \mathcal{G}, \mathcal{D}^{\prime}$ can be obtained by repeatedly applying ϕ to $\mathcal{D}^{\prime \prime}$.

Generating uniform samples

1. Assumption: there exists a perturbation operation

$$
\phi: \mathcal{G} \rightarrow \mathcal{G}
$$

s.t. for any $\mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime} \in \mathcal{G}, \mathcal{D}^{\prime}$ can be obtained by repeatedly applying ϕ to $\mathcal{D}^{\prime \prime}$.
2. We need to derive sufficient number of perturbations to obtain an independent and uniform sample from \mathcal{G}

Example

	1	0	1	1
\mathcal{D}_{0} : observed dataset (binary matrix).	0	1	1	0
rows: transactions: columns: items	1	0	1	0
	1	0	0	1

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right)=$ number of frequent itemsets w.r.t. frequency threshold θ

Example

\mathcal{D}_{0} : observed dataset (binary matrix). rows: transactions: columns: items

3	1	3	2	
1	0	1	1	3
0	1	1	0	2
1	0	1	0	2
1	0	0	1	2

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right)=$ number of frequent itemsets w.r.t. frequency threshold θ
$\mathbf{P}=$ the rows and columns totals

Example

\mathcal{D}_{0} : observed dataset (binary matrix). rows: transactions: columns: items

3	1	3	2	
1	0	1	1	3
0	1	1	0	2
1	0	1	0	2
1	0	0	1	2

$T_{0}=\mathcal{A}\left(\mathcal{D}_{0}\right)=$ number of frequent itemsets w.r.t. frequency threshold θ
$\mathbf{P}=$ the rows and columns totals
Question: Is T_{0} a "consequence" of \mathbf{P} ?

Example: perturbation for rows and columns sums

1. Take two rows u and v and two columns A and B of \mathcal{D}_{0} such that $u(A)=v(B)=1$ and $u(B)=v(A)=0$;
2. Change the rows so that

$$
u(B)=v(A)=1 \text { and } u(A)=v(B)=0
$$

Fig. 1. A swap in a $0-1$ matrix.

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.

Advantages and disadvantages of permutation testing

Conceptually very natural $)^{-}$

Requires a perturbation operation ϕ for $\mathbf{P}:$

Computationally very expensive:
m times: sample generation + running \mathcal{A} 因

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing
3. Recent developments and advanced topics
4. Final Remarks

Westfall-Young ${ }^{8}$ (WY) Permutation Testing

Perturbation: random shuffle of the labels (repeated m times).

Random Permutations

Compare p-values from original data with random labels.

[^9]$p_{\text {min }}^{j}=$ minimum p-value (over $\left.\mathcal{H}\right)$ on j-th random label
Estimated $F W E R$ for sign. thr. $\delta: \overline{F W E R}(\delta)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min }^{j} \leqslant \delta\right]$
$p_{\text {min }}^{j}=$ minimum p-value (over $\left.\mathcal{H}\right)$ on j-th random label
Estimated $F W E R$ for sign. thr. $\delta: \overline{F W E R}(\delta)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min }^{j} \leqslant \delta\right]$

Compute $\delta^{*}=\max \{\delta: \overline{\operatorname{FWER}}(\delta) \leqslant \alpha\}$ $=\alpha$-quantile of $\left\{p_{\min }^{j}\right\}$

$p_{\text {min }}^{j}=$ minimum p-value (over \mathcal{H}) on j-th random label
Estimated $F W E R$ for sign. thr. $\delta: \overline{F W E R}(\delta)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min }^{j} \leqslant \delta\right]$

Compute $\delta^{*}=\max \{\delta: \overline{\operatorname{FWER}}(\delta) \leqslant \alpha\}$ $=\alpha$-quantile of $\left\{p_{\min }^{j}\right\}$

Output $\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \delta^{*}\right\}$.
$p_{\text {min }}^{j}=$ minimum p-value (over $\left.\mathcal{H}\right)$ on j-th random label
Estimated $F W E R$ for sign. thr. $\delta: \overline{F W E R}(\delta)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left[p_{\min }^{j} \leqslant \delta\right]$

Compute $\delta^{*}=\max \{\delta: \overline{\operatorname{FWER}}(\delta) \leqslant \alpha\}$

$$
=\alpha \text {-quantile of }\left\{p_{\min }^{j}\right\}
$$

Output $\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \delta^{*}\right\}$.
Problem: exhaustive enumeration of \mathcal{H} to compute $p_{\text {min }}^{j}$.

How to compute $p_{\text {min }}^{j}$ efficiently?

How to compute $p_{\text {min }}^{j}$ efficiently?

FASTWY ${ }^{9}$: Intuition:

$$
\hat{\psi}(\mathcal{S}) \geqslant p_{\min }^{j}=\mathcal{S} \text { is untestable } \Rightarrow \text { cannot improve } p_{\min }^{j}!
$$

[^10](improved version ${ }^{10}$ of) FASTWY: computes efficiently $p_{\min }^{j}$ with a branch-and-bound search over \mathcal{H}, pruning subtrees with $\hat{\psi}(\cdot)$:
start with $\theta=1$ and $p_{\text {min }}^{j}=1$; explore patterns with DF exploration, updating $p_{\text {min }}^{j}$; increase θ while exploring if $p_{\text {min }}^{j} \leqslant \hat{\psi}(\theta)$

Issues of FASTWY:

1) repeat the procedure m times ($m \simeq 10^{3}-10^{4}$ for $\alpha \simeq 0.05$);
2) for some j, the \min. p-value $p_{\text {min }}^{j}$ is large \rightarrow large space of testable patterns! (small freq. threshold θ)

WYlight

WYlight ${ }^{11}$: Intuition: to find δ^{*} we only need to compute exactly the lower α-quantile of $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{m}$.

[^11]
WYlight

WYlight algorithm: one DF exploration of \mathcal{H} processing all m permutations at once.

start with $\theta=1$ and $p_{\text {min }}^{j}=1, \forall j$; explore patterns with DF exploration, updating $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{m}$; increase θ while exploring if α-quant. of $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{m} \leqslant \hat{\psi}(\theta)$
(imgs. from LAMP)

Too many results!

Motivation: for many

 datasets, impractically large set of results ($S P(0.05)$) are found even when controlling $F W E R \leqslant 0.05$:| dataset | $\|D\|$ | $\|I\|$ | avg | n_{1} / n | $S P(0.05)$ |
| :---: | ---: | ---: | :---: | :---: | :---: |
| svmguide3 (L) | 1,243 | 44 | 21.9 | 0.23 | 36,736 |
| chess (U) | 3,196 | 75 | 37 | 0.05 | $>10^{7}$ |
| mushroom (L) | 8,124 | 118 | 22 | 0.48 | 71,945 |
| phishing (L) | 11,055 | 813 | 43 | 0.44 | $>10^{7}$ |
| breast cancer (L) | 12,773 | 1,129 | 6.7 | 0.09 | 6 |
| a9a (L) | 32,561 | 247 | 13.9 | 0.24 | 348,611 |
| pumb-star (U) | 49,046 | 7117 | 50.5 | 0.44 | $>10^{7}$ |
| bms-web1 (U) | 58,136 | 60,978 | 2.51 | 0.03 | 704,685 |
| connect (U) | 67,557 | 129 | 43 | 0.49 | $>10^{8}$ |
| bms-web2 (U) | 77,158 | 330,285 | 4.59 | 0.04 | 289,012 |
| retail (U) | 88,162 | 16,470 | 10.3 | 0.47 | 3,071 |
| ijcnn1 (L) | 91,701 | 44 | 13 | 0.10 | 607,373 |
| T10I4D100K (U) | 100,000 | 870 | 10.1 | 0.08 | 3,819 |
| T40I10D100K (U) | 100,000 | 942 | 39.6 | 0.28 | $5,986,439$ |
| $\operatorname{codrna}(L)$ | 271,617 | 16 | 8 | 0.33 | 4,088 |
| accidents (U) | 340,183 | 467 | 33.8 | 0.49 | $>10^{7}$ |
| bms-pos (U) | 515,597 | 1,656 | 6.5 | 0.40 | $26,366,131$ |
| covtype (L) | 581,012 | 64 | 11.9 | 0.49 | 542,365 |
| susy (U) | $5,000,000$ | 190 | 43 | 0.48 | $>10^{7}$ |

What if we want (quickly!) only the top- k significant patterns, with same guarantees on $F W E R$?

[^12]What if we want (quickly!) only the top- k significant patterns, with same guarantees on $F W E R$?
$p^{k}=k$-th smallest p-value of $\mathcal{S} \in \mathcal{H}$, $\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$, $\bar{\delta}=\min \left\{p^{k}, \delta^{*}\right\}$.

[^13]What if we want (quickly!) only the top- k significant patterns, with same guarantees on $F W E R$?
$p^{k}=k$-th smallest p-value of $\mathcal{S} \in \mathcal{H}$,
$\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$,
$\bar{\delta}=\min \left\{p^{k}, \delta^{*}\right\}$.
Set of top- k significant patterns:

$$
T K S P(\mathcal{D}, \mathcal{H}, \alpha, k):=\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \bar{\delta}\right\}
$$

[^14]What if we want (quickly!) only the top- k significant patterns, with same guarantees on $F W E R$?
$p^{k}=k$-th smallest p-value of $\mathcal{S} \in \mathcal{H}$,
$\delta^{*}=\max \{x: \overline{F W E R}(x) \leqslant \alpha\}$,
$\bar{\delta}=\min \left\{p^{k}, \delta^{*}\right\}$.
Set of top- k significant patterns:

$$
T K S P(\mathcal{D}, \mathcal{H}, \alpha, k):=\left\{\mathcal{S}: p_{\mathcal{S}} \leqslant \bar{\delta}\right\} .
$$

Computed efficiently with TopKWY ${ }^{12}$!

[^15]
TopKWY

Intuition: to compute $\operatorname{TKSP}(\mathcal{D}, \mathcal{H}, \alpha, k)$ we only need to compute exactly the values of the set $\left\{p_{\min }^{j}\right\}_{j=1}^{m}$ that are $\leqslant \bar{\delta}$.

TopKWY

Algorithm: Best First (BF) exploration of \mathcal{H} to compute $\bar{\delta}$.
(Approach similar to TopKMiner (Pietracaprina and Vandin, 2007) for top- k freq. itemsets). start with $\theta=1$ and $p_{\text {min }}^{j}=1, \forall j$; explore patterns with BF exploration, updating $\left\{p_{\text {min }}^{j}\right\}_{j=1}^{m}$ and p^{k}; increase θ while exploring if $\min \left\{\alpha\right.$-quant. of $\left.\left\{p_{\min }^{j}\right\}_{j=1}^{m}, p^{k}\right\} \leqslant \hat{\psi}(\theta)$
(imgs. from LAMP)

TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theorem
Let $\bar{\delta}=\min \left\{p^{k}, \delta\right\}$, and $\theta^{*}=\max \{x: \hat{\psi}(x)>\bar{\delta}\}$. TopKWY will process only the set $\operatorname{FP}\left(\mathcal{D}, \mathcal{H}, \theta^{*}\right)=\mathcal{T}(\bar{\delta})$. Instead, the DF search always explores a super-set of $\mathcal{T}(\bar{\delta})$.

[^16]
TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theorem
Let $\bar{\delta}=\min \left\{p^{k}, \delta\right\}$, and $\theta^{*}=\max \{x: \hat{\psi}(x)>\bar{\delta}\}$.
TopKWY will process only the set $\operatorname{FP}\left(\mathcal{D}, \mathcal{H}, \theta^{*}\right)=\mathcal{T}(\bar{\delta})$.
Instead, the DF search always explores a super-set of $\mathcal{T}(\bar{\delta})$.
2) Improved bounds to skip the processing of the permutations for many patterns.
(More details on the paper ${ }^{13}$;)

[^17]
TopKWY: Running time

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

Recent developments and advanced topics

1. Controlling the FDR
2. Covariate-adaptive methods
3. Relaxing all conditional assumptions

More details and references at http://rionda.to/statdmtut

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

Final Remarks

Knowledge Discovery should be based on hypothesis testing: the data is never the whole universe.

Lots of room for research: we scratched the surface
Statistics: tests with higher power, fewer assumptions
CS: scalability (wrt many dimensions) is still an issue.

Balance theory and practice

Hypothesis Testing and Statistically-sound Pattern Mining
 Tutorial - SDM'21

Leonardo Pellegrina ${ }^{1}$ Matteo Riondato ${ }^{2}$ Fabio Vandin ${ }^{1}$
${ }^{1}$ Dept. of Information Engineering, University of Padova (IT)
${ }^{2}$ Dept. of Computer Science, Amherst College (USA)
Tutorial webpage: http://rionda.to/statdmtut

101/101

What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
False Discovery Rate (FDR): $\mathbb{E}[V / R]$ (assuming $V / R=0$ when $R=0$).

What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): $\operatorname{Pr}[V \geqslant 1]$.
Let R the number of discoveries (i.e., rejected hypotheses).
False Discovery Rate (FDR): $\mathbb{E}[V / R]$ (assuming $V / R=0$ when $R=0$).

Significant pattern mining while controlling the FDR?

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold $a \in(0,1)$, probability class label is c_{1} when pattern \mathcal{S} is present is $\geqslant a$ [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

What about controlling the FDR? (2)

Some methods for scenario where significance \neq association with a class label:

- significance $=$ deviation from expectation when items place independently in transactions (with same frequency as in dataset \mathcal{D}) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal, Vandin. Journal of the ACM 2012]
- statistical emerging patterns: given a threshold $a \in(0,1)$, probability class label is c_{1} when pattern \mathcal{S} is present is $\geqslant a$ [Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD 2017.]

Not a solved problem!

Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions
4. Final Remarks

Using additional information

Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Using additional information

> Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Example: the support $\sigma(\mathcal{S})$ of \mathcal{S} has an impact on its minimum achivable p-value for Fisher's exact test

Using additional information

Sometimes there are additional measures (covariates) that provide information on whether a pattern can be significant.

Example: the support $\sigma(\mathcal{S})$ of \mathcal{S} has an impact on its minimum achivable p-value for Fisher's exact test

The covariate can be used to weight hypotheses/patterns or, equivalently, use different correction thresholds for False Discovery Rate (FDR) based on the covariate

Independent Hypothesis Weighting (IHW) ${ }^{14}$

[^18]
Independent Hypothesis Weighting $(\mathrm{IHW})^{14}$

[^19]Independent Hypothesis Weighting (IHW) ${ }^{14}$

[^20]
Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions
4. Final Remarks

No conditioning?

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \nsubseteq t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).

No conditioning?

	$\mathcal{S} \subseteq t_{i}$	$\mathcal{S} \mp t_{i}$	Row m.
$\ell\left(t_{i}\right)=c_{1}$	$\sigma_{1}(\mathcal{S})$	$n_{1}-\sigma_{1}(\mathcal{S})$	n_{1}
$\ell\left(t_{i}\right)=c_{0}$	$\sigma_{0}(\mathcal{S})$	$n_{0}-\sigma_{0}(\mathcal{S})$	n_{0}
Col. m.	$\sigma(\mathcal{S})$	$n-\sigma(\mathcal{S})$	n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).
Q: Shall we stop conditioning on the row totals? In general, removing assumptions is a blessed goal.

Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the likelihood.

It destroys the repeated-sampling (frequentist) interpretation of p-value, because it reduces the sample space:
fewer datasets are considered possible, often too few to be realistic.

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! :;

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! ;)

KDD settings: \mathcal{D} is built by actually sampling from a distribution whose domain also include the group label:
the row totals are random variables and rightly so.
So let's stop conditioning, and only keep the sample size n as fixed.

Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural. No one does it \rightarrow no controversy! ;)

KDD settings: \mathcal{D} is built by actually sampling from a distribution whose domain also include the group label:
the row totals are random variables and rightly so.
So let's stop conditioning, and only keep the sample size n as fixed.
How? ${ }^{\text {R }}$

[^0]: ${ }^{1}$ A. Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.

[^1]: ${ }^{1}$ A. Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.

[^2]: ${ }^{1}$ A. Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.

[^3]: ${ }^{2}$ Minato, S. I., et al. A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. ECML-PKDD 2014.

[^4]: ${ }^{3}$ F. Llinares-López, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB'18 Tutorial.
 ${ }^{4}$ M. Sugiyama, F. Llinares-López, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with multiple testing correction. ICDM 2015.

[^5]: ${ }^{5}$ L. Pellegrina, M. Riondato, and F. Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". KDD 2019.

[^6]: ${ }^{5} \mathrm{M}$. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with Rademacher averages. KDD 2015.
 ${ }^{6}$ L. Pellegrina, M. Riondato, and F. Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". KDD 2019.

[^7]: ${ }^{7}$ L. Pellegrina, M. Riondato, and F. Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". KDD 2019.

[^8]: ${ }^{7}$ L. Pellegrina, M. Riondato, and F. Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". KDD 2019.

[^9]: ${ }^{8}$ P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley-Interscience, 1993.

[^10]: ${ }^{9}$ A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial regulation discovery. ICBB, 2013.

[^11]: ${ }^{11}$ F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient significant pattern mining via permutation testing, KDD 2015.

[^12]: ${ }^{12}$ L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^13]: ${ }^{12}$ L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^14]: ${ }^{12}$ L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^15]: ${ }^{12}$ L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^16]: ${ }^{13}$ L. Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^17]: ${ }^{13}$ L. Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation testing. KDD 2018, DAMI 2020.

[^18]: ${ }^{14}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

[^19]: ${ }^{14}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

[^20]: ${ }^{14}$ Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods 13.7 (2016): 577.

