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Introduction

Data mining and (inferential) statistics have traditionally two
different point of views

§ data mining: the data is the complete representation of the
world and of the phenomena we are studying

§ statistics: the data is obtained from an underlying generative
process, that is what we really care about

Similar questions but different flavours!
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Example

Data: information from two online communities C1 and C2,
regarding whether each post is in a given topic T .

§ Data mining: “what fraction of posts in C1 are related to T?
What fraction of posts in C2 are related to T?”

§ Statistics: “What is the probability that a post from C1 is
related to T? What is the probability that a post from C2 is
related to T?”

Note: the two are clearly related, but different!
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?

We use the statistical hypothesis testing framework
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Statistical Hypothesis Testing

We are given:

§ a dataset D
§ a question we want to answer

ñ a pattern S
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)

Question: is S associated with one of the two labels?
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Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H0 (“S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
xS “ fSpDq that describes S in D
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Statistical Hypothesis Testing: p-value

Let xS “ fSpDq the value of the test statistic for our dataset D.

Let XS be the random variable describing the value of the test
statistic under the null hypothesis H0 (i.e., when H0 is true)

p-value: p “ PrrXS more extreme than xS : H0 is trues

“XS more extreme than xS”: depends on the test, may be
XS ě xS or XS ď xS or something else. . .

Rejection rule:
Given a statistical level α P p0, 1q: reject H0 iff p ď αñ S is
significant!
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Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

§ type I error: reject H0 when H0 is true ñ flag S as significant
when it is not (false discovery)

§ type II error: do not reject H0 when H0 is false ñ do not flag
S as significant when it is

	
Correct!	

	
Type	I	error	

	
Type	II	error	

	
Correct!	

REALITY	

DE
CI
SI
O
N
	

H0	false	 H0	true	

reject	H0	

accept	H0	

Theorem

Using the rejection rule, the probability of a type I error is ď α
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Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:
A test has power β if PrrH0 is rejected : H0 is falses “ β

Note: for a test with power β, we have Prrtype II errors “ 1´ β

(Power is not everything: if it was, it would be enough to always
flag all patterns as significant. . . )
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Example: Testing for Independence

Given:
§ transactional dataset D “ tt1, . . . , tnu, each transaction ti has a

label `ptiq P tc0, c1u

§ a pattern S

Goal: understand if the appearance of S in transactions (S Ď ti)
and the transactions labels (`ptiq) are independent.

Null hypothesis H0: the events “S Ď ti” and “`ptiq “ c1” are
independent.

Alternative hypothesis: there is a dependency between “S Ď ti”
and “`ptiq “ c1”
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Example: market basket analysis

S “ torange, tomato, broccoliu

H0: presence of S is independent of (not associated with) label
“professor”
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

§ σ1pSq = number of transactions containing S (=support of S)
with label c1

§ σ0pSq = support of S with label c0

§ σpSq “ σ0pSq ` σ1pSq = support of S in D
§ ni “ number transactions with label ci
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Example: Testing for Independence (3)

Useful representation of the data: contingency table

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Test statistic = σ1pSq
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Example: market basket analysis

S Ď ti S Ę ti Row m.

`ptiq “ c1 3 1 4

`ptiq “ c0 1 3 4

Col. m. 4 4 8

Value of test statistic = σ1pSq = 3
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Fisher’s exact test

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Assumption: the column marginals (σpSq, n´ σpSq and the row
marginals (n0, n1) are fixed.
ñ under the null hypothesis (independence), the support of S in
class c1 follows an hypergeometric distribution of parameters n, n1,
and σS
ñ the p-value is easily computable!
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

XS „ hypergeometric of parameters 8, 4, 4

ñ Probability of table = PrpXS “ 3q “
p43qp

4
1q

p84q
“ 0.228

p-value = PrpXS ě 3q “
ř

kě3 PrpXS “ kq “ 0.243

If α “ 0.05ñ S is not associated with label “professor”
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χ2 test
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

In the old days: “Fisher’s exact test is computationally
expensive...”

Random variables (r.v.) describing outcome under H0 (H0 is true)
§ XS,0 = r.v. describing the support of S in class c0

§ XS,1 = r.v. describing the support S in class c1

§ XS̄,0 = r.v. describing num. transactions without S in class c0

§ XS̄,1 = r.v. describing num. transactions without S in class c1

Test statistic: X “
ř

iPtS,S̄u,jPt0,1upXi,j ´ ErXi,jsq
2{ErXi,js

Note: ErXi,js are easily computable
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χ2 test

Theorem

When nÑ `8, X Ñ χ2 distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities
for the χ2 distribution

Note: the χ2 test is the asymptotic version of Fisher’s exact test.
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

XS „ χ2 with 1 degree of freedom

Test statistic: 2

p-value = PrpXS ě 2q “ 0.16

If α “ 0.05ñ S is not associated with label “professor”
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Barnard’s exact test

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Assumption: the row marginals (n0, n1) are fixed

but the column
marginals (σpSq, n´ σpSq) are not!

PrrS Ď ti : `ptiq “ c0s “ π0

PrrS Ď ti : `ptiq “ c1s “ π1

Null hypothesis H0: π0 “ π1 “ π

π is nuisance parameter, in the sense that we are not interested in
its value, but its value defines the distribution of our observations
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Bernard’s exact test(2)

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

PrrS Ď ti : `ptiq “ c0s “ π0

PrrS Ď ti : `ptiq “ c1s “ π1

Null hypothesis H0: π0 “ π1 “ π

How do we compute the p-value?
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Bernard’s exact test(3)

Test statistic: probability of the contingency table

Fixed π, the probability of the contingency table is easy to compute.

However, computing the p-value is computationally expensive!

§ π is unknown: consider a grid of values for π

§ need to enumerate all tables more extreme than the observed
table for a given π
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

probability of table given π: Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

more extreme tables (given π):
T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq “ 0.50 (for π “ 0.4)

29/101



Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

probability of table given π: Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

more extreme tables (given π):
T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq “ 0.50 (for π “ 0.4)

29/101



Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

probability of table given π: Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

more extreme tables (given π):
T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq “ 0.50 (for π “ 0.4)

29/101



Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

probability of table given π: Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

more extreme tables (given π):
T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq

“ 0.50 (for π “ 0.4)

29/101



Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

probability of table given π: Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

more extreme tables (given π):
T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq “ 0.50 (for π “ 0.4)

29/101



Fisher’s exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Note: Barnard’s exact test depends on (unknown) nuisance
parameter π = probability that pattern S appears in a transaction.

What about Fisher’s exact test?

Fixing the frequency σpSq of S « fixing the probability that S
appears in a transaction
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Fisher’s exact text vs Barnard’s exact test (2)

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher’s text (computational reasons?)
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Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in

Let pS be the p-value for S.

Rejection rule:
Given a statistical level α P p0, 1q: reject H0 iff p ď αñ S is
significant!
ñ probability false discovery ď α

KDD scenario: we consider multiple hypotheses given by our
dataset D

What happens if we use the rejection rule above?
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Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics

4. Final Remarks
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Multiple hypothesis testing

Let H be the set of hypotheses we want to test, and m “ |H|.
E.g., itemsets from a universe I of items: m “ 2|I| ´ 1

Proposition

If we use α to test the significance of each hypothesis in H, then

Ernumber of false discoveriess “ mˆ α

Typical α to test a single hypothesis: α “ 0.05 or 0.01
ñ many false discoveries in expectation
ñ at least one with high probability!

We want guarantees on the probability of any false discovery
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Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery

Family-Wise Error Rate (FWER):

Prrą 0 false discoveriess

We want FWER ď α, for some α P p0, 1q.

How to achieve this goal?

§ Bonferroni correction

§ Bonferroni-Holm procedure

§ . . .
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Bonferroni correction

H: set of hypotheses (patterns) to test, m “ |H|.
For S P H, let HS,0 be the corresponding null hypothesis.

Rejection rule: Given a statistical level α P p0, 1q:
reject HS,0 (i.e., flag S as significant) iff p ď α

m

Why does this approach controls the FWER?

§ for each S, PrrS is a false discovery s ď α
m

§ union bound on m events: Prrą 0 false discoveries s
ď
ř

SPH PrrS is false discovery s ď |H| αm ď α
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Choosing hypotheses before testing?

Alphabet of items I with |I| “ 6000
Dataset D with 10 transactions with label c1, 10 with label c0

Hypotheses H “ I

§ “large m, small data: nothing will be flagged as significant!”

§ “let’s select some hypotheses first, and then do the testing. . . ”:
find pattern S˚ “ argmaxSPHpσ1pSq ´ σ0pSqq.

§ “I am going to test only S˚!”
E.g., σ1pS˚q “ 10, σ0pS˚q “ 0. Fisher’s test p-value = 0.0001

§ “S˚ is very significant!!!”
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“S is very significant!!!”

BUT IT IS NOT!

Assume that D is generated as follows:

§ Each item/pattern S will appear exactly 10 times

§ For i “ 1, . . . , 10, place S in the i-th transaction labeled c0 with
probability 1{2, and the i-th transaction labeled c1 otherwise

No pattern S is associated with class labels!

For a given S, Prpσ1pSq “ 10 and σ0pSq “ 0q “ p1{2q10
“ 1{1024

In expectation, « 5 patterns with σ1pSq “ 10 and σ0pSq “ 0.
they are all false discoveries!
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Where is the problem?

We selected the hypothesis to test on the basis of its support σ1pSq

σ1pSq “ 10´ σ0pSq is clearly related to the p-value

We have essentially looked at the p-values of all hypotheses
and then acted as if we did not!
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Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics

4. Final Remarks
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Selecting hypotheses

A smaller H will lead to a higher corrected significance threshold
α{|H|, thus may lead to higher power.

Question: can we shrink H a posteriori?

I.e., Can we use D to select H1 Ĺ H
such that HzH1 only contains non-significant hypotheses?

Answer: No. . . and yes!
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How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.

2) Use the test results to select which hypotheses to include in H1.

3) Use Bonferroni correction on H1 to bound the FWER (for H)

Selecting H1 must be done without performing the tests on D.
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The holdout approach

1. Partition D into D1 and D2: D1 YD2 “ D and D1 XD2 “ H.

2. Apply some selection procedure to D1 to select H1

(it may include performing the tests on D1).

3) Perform the individual test for each hypothesis in H1 on D2,
using the Bonferroni correction on H1.

Splitting D is similar to using a training set and a test set.
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An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007
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When holdout works and why

Holdout can be used only when D can be partitioned into D1 and
D2 s.t. D1 and D2 are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?

45/101



When holdout works and why

Holdout can be used only when D can be partitioned into D1 and
D2 s.t. D1 and D2 are samples from the null distribution.

Such partitioning may not exist or be known.

E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?

45/101



When holdout works and why

Holdout can be used only when D can be partitioned into D1 and
D2 s.t. D1 and D2 are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?

45/101



How selective shall we be?

Let Zα Ď H be the set of α-significant hypotheses.

When selecting H1, we may get rid of some α-significant ones:

Zα X pHzH1q ‰ H.

Does the power increases because the corrected significance
threshold increases?

Unclear!

One can build examples where power Ò, Ó, or “.
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Take-away message

Being more or less selective in choosing H1 has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that

holdout may remove α-significant hypotheses from H.

OTOH, holdout is a simple natural procedure, and

it generally leads to higher power because

most discarded hypotheses are not α-significant.

Coming up: how to discard only non-α-significant hypotheses.
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A breakthrough [Tarone 1990]

The statistic of Fisher’s exact test is discrete

ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4
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A breakthrough [Tarone 1990] (2)

The statistic of Fisher’s exact test is discrete
ñ there is a minimum attainable p-value for a pattern S.

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Let pF pσpSq, xq be the statistic for pattern S with support σpSq
assuming σ1pSq “ x.

It must be maxt0, n1 ´ pn´ σpSqqu ď x ď mintσpSq, n1u

ñ the range of pF pσpSq, xq depends only on σpSq (n, n1 are fixed)
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A breakthrough [Tarone 1990] (3)

Then the minimum attainable p-value for S is:

ψpσpSqq “ min
maxt0,n1´pn´σpSqquďxďmintσpSq,n1u

pF pσpSq, xq

Tarone’s result: when testing each hypothesis with significance level
δ, then the hypotheses that will certainly have p-value
greater than δ do not need to be counted when using
Bonferroni’s correction!
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level δ if
ψpσpSqq ą δ

ñ S is untestable.

Set of testable hypotheses (for significance level δ):

T pδq “ tS | ψpσpSqq ď δu

All the others do not really matter, and should not be counted
when applying the Bonferroni correction to control for the FWER.
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Example: market basket analysis

S “ torange, tomato, broccoliu

minimum attainable p-value
ψpσpSqq “ min

0ďxďmintσpSq,n1u
tpF pσpSq, xqu

obtained for x “ 4: ψp4q “ 0.014.

ñ if the significance level used to test each hypothesis is δ “ 0.01,
you do not need to count S among the hypotheses!
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Tarone’s Improved Bonferroni correction

Set of testable hypotheses:

T pδq “ tS | ψpσpSqq ď δu

Rejection rule:
Given a statistical level α P p0, 1q, let δ ď α{|T pδq|: reject H0 iff
p ď δ ñ S is significant!

Theorem

The FWER is ď α.

Idea: find δ˚ “ maxtδ : δ ď α{|T pδq|u!
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Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone’s approach to selecting hypotheses

Minimal attainable p-value

Anything else =)

Let’s take a 5–10 minutes break.

55/101



Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone’s approach to selecting hypotheses

Minimal attainable p-value

Anything else =)

Let’s take a 5–10 minutes break.

55/101



Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns

2.1 LAMP: Tarone’s method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing

3. Recent developments and advanced topics

4. Final Remarks

56/101



Selecting testable patterns

Minimum attainable p-value ψpσpSqq of a pattern S: select
patterns to test from H.

Näıve approach: compute ψpσpSqq for all S P H, find δ‹

Not possible to enumerate all S P H...
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Minimum attainable p-value ψpσpSqq of a pattern S is a function
of its support σpSq in the data.
Low (and very high) support σpSq Ñ large ψpσpSqq

lo
g
1
0
pψ
pσ
pS
qq
q

σpSq
n1 n

n “ 60, n1 “ 30.

(from F. Llinares-López, D. Roqueiro, ISMB’18 Tutorial.)

Intuition of LAMP1: connection betw. testable and frequent patterns!
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP pD,H, θq Ď H w.r.t. support θ, that is

FP pD,H, θq :“ tS P H : σpSq ě θu .

Typical approach: Explore the search tree of H, pruning subtrees
with support ă θ (monotonicity of support)

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP pD,H, θq Ď H w.r.t. support θ, that is

FP pD,H, θq :“ tS P H : σpSq ě θu .

Typical approach: Explore the search tree of H, pruning subtrees
with support ă θ (monotonicity of support)
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Frequent Pattern Mining

Monotonicity of patterns’ support
Theorem

Let S be an itemset. Then it holds σpS 1q ď σpSq for all S 1 Ě S.

Example:

S 1 “ t , , , u, S “ t u

σpS 1q “ 2 ď σpSq “ 5.

Valid for many other patterns (e.g., subgraphs, sequential patterns, subgroups, ...)
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LAMP: monotone minimum achievable p-value function ψ̂p¨q:

ψ̂pxq “

#

ψpxq , if x ď n1

ψpn1q , othw.

lo
g
1
0
pψ
pσ
pS
qq
q

σpSq
n1 n

lo
g
1
0

´

ψ̂
pσ
pS
qq

¯

σpSq
n1

monotone!

n
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We obtain the equivalence:

T pψ̂pθqq “ FP pD,H, θq “ tS P H : σpSq ě θu .

Thus:
|T pψ̂pθqq| “ |FP pD,H, θq|.

We can use |FP pD,H, θq| to find

δ˚ “ maxtδ : δ|T pδq| ď αu.
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LAMP algorithm: compute δ˚ “ maxtδ : δ|T pδq| ď αu
enumerating Frequent Itemsets.

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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LAMP: Experimental Results

Max itemsets cardinality Max itemsets cardinality

Estimated FWER (α “ 0.05) of LAMP vs Bonferroni correction.

(imgs. from LAMP)
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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For θ2 we count again all patterns
already counted for θ1 ě θ2!

Is it possible to explore patterns only once?
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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SupportIncrease2: LAMP with only one Depth-First (DF)
exploration of H.

Supporting Fig. S2.
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θ1

θ2

start with θ “ 1; increase θ while exploring

if the curr. num. of frequent patterns ě α{ψ̂pθq

(imgs. from LAMP)

2Minato, S. I., et al. A fast method of statistical assessment for combinatorial hypotheses based on
frequent itemset enumeration. ECML-PKDD 2014.
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Mining Significant Subgraphs4

Goal: find induced subgraphs

that are significantly enriched

in a class of labelled graphs

(imgs. from 3)

3F. Llinares-López, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB’18 Tutorial.
4M. Sugiyama, F. Llinares-López, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with

multiple testing correction. ICDM 2015. 67/101
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Relaxing conditional assumptions

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

(gray = fixed,
yellow = random)

Recap: Assumptions of Fisher’s test: all marginals of all the tested
contingency tables are fixed by design of the experiment.

In many cases, only n0, n1, and n are fixed, while σpSq depends on
the data Ñ Unconditional Test!

Not used in practice, mainly for computational reasons. . .
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Recap: Barnard’s Exact Test
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

(gray = fixed,

yellow = random)

Nuisance variables: πS,j “ P p“S Ď ti” | “`ptiq “ cj”q,
NH: πS,0 “ πS,1 “ πS “ P p“S Ď ti”q.

Let CS = observed contingency table for S.
P pC | πq “ prob. of a table C assuming NH and πS “ π

T pCS , πq “ tmore extreme cont. tables of CSu
φpCS , πq “

ÿ

CPT pCS ,πq

P pC | πq

p-value: pS “ max
πPr0,1s

tφpCS , πqu
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T pCS , πq “ tmore extreme cont. tables of CSu
φpCS , πq “

ÿ

CPT pCS ,πq

P pC | πq

p-value: pS “ max
πPr0,1s

tφpCS , πqu Ñ hard to compute!
70/101



Efficient Unconditional Testing: SPuManTE5

1) Computes confidence intervals CjpSq for πS,j

Compute a probabilistic (high prob.) upper bound to

sup
SPH,jPt0,1u

ˇ

ˇ

ˇ

ˇ

πS,j ´
σjpSq
nj

ˇ

ˇ

ˇ

ˇ

(note: σjpSq{nj is observed from D, πS,j is unknown)

How? Upper bound to Rademacher Complexity of H.

5L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Compute a probabilistic (high prob.) upper bound to

sup
SPH,jPt0,1u

ˇ

ˇ

ˇ

ˇ

πS,j ´
σjpSq
nj

ˇ

ˇ

ˇ

ˇ

(note: σjpSq{nj is observed from D, πS,j is unknown)

How? Upper bound5 to Rademacher Complexity of H.

5M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with
Rademacher averages. KDD 2015.

6L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Efficient Unconditional Testing: SPuManTE

2) p-value pS according to confidence intervals:

pS “

#

0 , if C0pSq X C1pSq “ H
maxtφpCS , πq, π P C0pSq X C1pSqu , othw.

Flag S as significant if pS ď δ.
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Efficient Unconditional Testing: SPuManTE

p-value pS according to confidence intervals:

pS “

#

0 , if C0pSq X C1pSq “ H
maxtφpCS , πq, π P CpSqu , othw.

p-value pS is still expensive to compute in second case!

3) Upper and Lower bounds to pS, and efficient algorithm for
computation of φp¨q

More in the paper7 :)

7L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Permutation Testing

Main idea: estimate the null distribution by randomly perturbing
the observed data.

Pro: takes advantage of the dependence structure of the hypothesis

Cons: computationally expensive, assumptions
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Permutation Testing: Setting

D0: observed dataset from some generative process G.

E.g., a transactional dataset

T0 “ ApD0q P R: output of analysis algorithm A on D0

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ

P: a set of properties of D0 satisfied by all D P G
E.g., the rows and columns totals

Question: Is T0 surprising? Or just a “consequence” of P?
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Null hypothesis

Null hypothesis H0: T0 is fully explained by P.

I.e., a value of T0 is “typical” for datasets from G.

I.e., it is very likely to observe a value ApDq ě T0 in
a dataset D taken from G.

Ideally:

QpT0q “ Pr
D„G

pApDq ě T0q . Reject H0 if QpT0q ď δ.

Very often: no closed form for QpT0q!
Instead: empirical estimate Q̃pT0q of QpT0q using samples from G
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Permutation Testing

1. Generate D “ tD1, . . . ,Dmu independent uniform samples taken
from G.

2. Run A on each Di P D to obtain T “ tT1, . . . , Tmu.

3. Compute the empirical p-value Q̃pT0q:

Q̃pT0q “
|ti : Ti ě T0u| ` 1

m` 1

4. If Q̃pT0q ď δ, reject H0.
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Generating uniform samples

1. Assumption: there exists a perturbation operation

φ : G Ñ G

s.t. for any D1, D2 P G, D1 can be obtained by repeatedly applying
φ to D2.

2. We need to derive sufficient number of perturbations to obtain
an independent and uniform sample from G
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Example

D0: observed dataset (binary matrix).
rows: transactions: columns: items

1 0 1 1
0 1 1 0
1 0 1 0
1 0 0 1

T0 “ ApD0q = number of frequent itemsets w.r.t. frequency
threshold θ

P = the rows and columns totals

Question: Is T0 a “consequence” of P?
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D0: observed dataset (binary matrix).
rows: transactions: columns: items

3 1 3 2

1 0 1 1 3
0 1 1 0 2
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1 0 0 1 2
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Example: perturbation for rows and columns sums

1. Take two rows u and v and two columns A and B of D0

such that upAq “ vpBq “ 1 and upBq “ vpAq “ 0;

2. Change the rows so that
upBq “ vpAq “ 1 and upAq “ vpBq “ 0

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.
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Advantages and disadvantages of permutation testing

Conceptually very natural

Requires a perturbation operation φ for P

Computationally very expensive:

m times: sample generation + running A
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Westfall-Young8 (WY) Permutation Testing

Perturbation: random shuffle of the labels (repeated m times).

…

1 2 3 4 jp

Original Data Random Permutations

…

…

…

Compare p-values from original data with random labels.
8P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for

p-Value Adjustment. Wiley-Interscience, 1993. 84/101



pjmin “ minimum p-value (over H) on j-th random label

Estimated FWER for sign. thr. δ: FWERpδq “
1

m

m
ÿ

i“1

1

”

pjmin ď δ
ı

Compute δ˚ “ max
 

δ : FWERpδq ď α
(

“ α-quantile of tpjminu

j
mtαmu1

pjmin

δ˚

Output tS : pS ď δ˚u .

Problem: exhaustive enumeration of H to compute pjmin.
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How to compute pjmin efficiently?

FASTWY: Intuition:

ψ̂pSq ě pjmin “ S is untestable ñ cannot improve pjmin!
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How to compute pjmin efficiently?

FASTWY9: Intuition:

ψ̂pSq ě pjmin “ S is untestable ñ cannot improve pjmin!

9A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial
regulation discovery. ICBB, 2013.
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(improved version10 of) FASTWY: computes efficiently pjmin with a
branch-and-bound search over H, pruning subtrees with ψ̂p¨q:

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
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computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
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θ1

θ2

start with θ “ 1 and pjmin “ 1; explore

patterns with DF exploration, updating pjmin;

increase θ while exploring if pjmin ď ψ̂pθq

(imgs. from LAMP)

10T. Aika, H. Kim, and J. Sese. High-speed westfall-young permutation procedure for
genome-wide association studies, ACM-BCB 2015.
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Issues of FASTWY:
1) repeat the procedure m times (m » 103-104 for α » 0.05);
2) for some j, the min. p-value pjmin is large Ñ large space of
testable patterns! (small freq. threshold θ)

j
mtαmu1

pjmin

δ˚

j
m1

θ
Many frequent patterns!
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WYlight

WYlight11: Intuition: to find δ˚ we only need to compute
exactly the lower α-quantile of tpjminu

m
j“1.

j
mtαmu1

pjmin

δ˚

j
mtαmu1

θj
WYlight: Less work!

FASTWY

11F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015.
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WYlight

WYlight algorithm: one DF exploration of H processing all m
permutations at once.

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1

θ2

start with θ “ 1 and pjmin “ 1,@j; explore

patterns with DF exploration, updating

tpjminu
m
j“1; increase θ while exploring

if α-quant. of tpjminu
m
j“1 ď ψ̂pθq

(imgs. from LAMP)
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Too many results!

Motivation: for many
datasets, impractically large
set of results (SP p0.05q) are
found even when controlling
FWER ď 0.05:
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What if we want (quickly!) only the top-k significant patterns,
with same guarantees on FWER?

pk “ k-th smallest p-value of S P H,
δ˚ “ max

 

x : FWERpxq ď α
(

,
δ “ min

 

pk, δ˚
(

.

Set of top-k significant patterns:

TKSP pD,H, α, kq :“
 

S : pS ď δ
(

.

Computed efficiently with TopKWY12!

12L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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TopKWY

Intuition: to compute TKSP pD,H, α, kq we only need to

compute exactly the values of the set
!

pjmin

)m

j“1
that are ď δ.

j
mtαmu1

pjmin

δ˚

δ
j

m1

θj TopKWY: Even less work!

WYlight

FASTWY
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TopKWY

Algorithm: Best First (BF) exploration of H to compute δ.
(Approach similar to TopKMiner (Pietracaprina and Vandin, 2007) for top-k freq. itemsets).

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1

θ2

start with θ “ 1 and pjmin “ 1,@j; explore

patterns with BF exploration, updating

tpjminu
m
j“1 and pk; increase θ while exploring

if min
!

α-quant. of tpjminu
m
j“1 , p

k
)

ď ψ̂pθq

(imgs. from LAMP)
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TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theorem

Let δ “ mintpk, δu, and θ˚ “ maxtx : ψ̂pxq ą δu.
TopKWY will process only the set FP pD,H, θ˚q “ T pδq.
Instead, the DF search always explores a super-set of T pδq.

2) Improved bounds to skip the processing of the permutations for
many patterns.

(More details on the paper13 )

13L. Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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TopKWY: Running time
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1. Introduction and Theoretical Foundations

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics

4. Final Remarks
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Recent developments and advanced topics

1. Controlling the FDR

2. Covariate-adaptive methods

3. Relaxing all conditional assumptions

More details and references at

http://rionda.to/statdmtut

98/101
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Final Remarks

Knowledge Discovery should be based on hypothesis testing:

the data is never the whole universe.

Lots of room for research: we scratched the surface

Statistics: tests with higher power, fewer assumptions

CS: scalability (wrt many dimensions) is still an issue.

Balance theory and practice

100/101



Hypothesis Testing and
Statistically-sound Pattern Mining

Tutorial — SDM’21

Leonardo Pellegrina1 Matteo Riondato2 Fabio Vandin1

1Dept. of Information Engineering, University of Padova (IT)

2Dept. of Computer Science, Amherst College (USA)

Tutorial webpage: http://rionda.to/statdmtut
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What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).

Family-Wise Error Rate (FWER): PrrV ě 1s.

Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): ErV {Rs (assuming V {R “ 0 when
R “ 0).

Significant pattern mining while controlling the FDR?
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What about controlling the FDR? (2)

Some methods for scenario where significance ‰ association with a
class label:

§ significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

§ statistical emerging patterns: given a threshold a P p0, 1q,
probability class label is c1 when pattern S is present is ě a

[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!

101/101



What about controlling the FDR? (2)

Some methods for scenario where significance ‰ association with a
class label:

§ significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

§ statistical emerging patterns: given a threshold a P p0, 1q,
probability class label is c1 when pattern S is present is ě a

[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!

101/101



What about controlling the FDR? (2)

Some methods for scenario where significance ‰ association with a
class label:

§ significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

§ statistical emerging patterns: given a threshold a P p0, 1q,
probability class label is c1 when pattern S is present is ě a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!

101/101



What about controlling the FDR? (2)

Some methods for scenario where significance ‰ association with a
class label:

§ significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

§ statistical emerging patterns: given a threshold a P p0, 1q,
probability class label is c1 when pattern S is present is ě a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!

101/101



Outline

1. Introduction and Theoretical Foundations

2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics

3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions

4. Final Remarks

101/101



Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support σpSq of S has an impact on its minimum
achivable p-value for Fisher’s exact test

The covariate can be used to weight hypotheses/patterns or,
equivalently, use different correction thresholds for False Discovery
Rate (FDR) based on the covariate
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Independent Hypothesis Weighting (IHW)14

14Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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No conditioning?

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Fisher’s test: conditioning on both row and column totals

Barnard’s test: conditioning only on row totals.

Removing the conditioning on the columns was really controversial.

It makes sense in a pattern mining setting (and others).

Q: Shall we stop conditioning on the row totals?

In general, removing assumptions is a blessed goal.
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Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the
likelihood.

It destroys the repeated-sampling (frequentist) interpretation of
p-value, because it reduces the sample space:

fewer datasets are considered possible,
often too few to be realistic.
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Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural.

No one does it Ñ no controversy!

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How?
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